TCP Vegas. End to End Congestion Avoidance on a Global Internet*

Lawrence S. Brakmo and Larry L. Petersont

Abstract

Vegasisanimplementation of TCPthat achieves
between 37 and 71% better throughput on the
Internet, with one-fifth to one-half the losses,
as compared to the implementation of TCP in
the Reno distribution of BSD Unix. This pa
per motivates and describes the three key tech-
niques employed by Vegas, and presentsthere-
sults of a comprehensive experimental perfor-
mance study—using both simul ationsand mea-
surements on the Internet—of the Vegas and
Reno implementations of TCP.

Keywords

TCP, Reno, Vegas, protocol s, congestion avoid-
ance.

1 Introduction

Few would argue that one of TCP's strengths lies in its
adaptive retransmission and congestion control mecha
nism, with Jacobson’s paper [7] providingthe cornerstone
of that mechanism. This paper attemptsto go beyond this
earlier work; to providesome new insightsinto congestion
control, and to propose modifications to the implementa-
tion of TCP that exploit these insights.

Thetangibleresult of thiseffort isan implementation of
TCP, based on modifications to the Reno implementation
of TCR, that werefer toas TCP \egas. Thisnameisatake-
off of earlier implementationsof TCPthat weredistributed
inreleases of 4.3 BSD Unix known as Tahoe and Reno; we
use Tahoe and Reno to refer to the TCP implementation
instead of the Unix release. Note that Vegas does not
involveany changes to the TCP specification; it ismerely

*This work supported in part by National Science Foundation Grant
IRI-9015407 and ARPA Contract DABT63-91-C-0030.

t The authors are with the Department of Computer Science, Univer-
sity of Arizona, Tucson, AZ 85721. (email: brakmo@cs.arizona.edu
lip@cs.arizona.edu

an aternative implementation that interoperates with any
other valid implementation of TCP. Infact, al the changes
are confined to the sending side.

The main result reported in this paper is that Vegas is
able to achieve between 37 and 71% better throughput
than Reno.! Moreover, thisimprovement in throughputis
not achieved by an aggressive retransmission strategy that
effectively steals bandwidth away from TCP connections
that use the current algorithms. Rather, it is achieved
by a more efficient use of the available bandwidth. Our
experiments show that Vegas retransmits between one-
fifth and one-half as much data as does Reno.

This paper is organized as follows. Section 2 outlines
the tools we used to measure and analyze TCP. Section
3 then describes the techniques employed by TCP Vegas,
coupled with the insights that led us to the techniques.
Section 4 then presents a comprehensive evaluation of
Vegas' performance, includingboth simulationresultsand
measurements of TCP running over the Internet. Findly,
Section 5 discusses severa relevant issues and Section 6
makes some concluding remarks.

2 Tools

This section briefly describes the tool s used to implement
and analyze the different versions of TCP. All of the pro-
tocols were developed and tested under the University of
Arizona's z-kernel framework [6]. Our implementation
of Reno was derived by retrofitting the BSD implementa-
tion into the z-kernel. Our implementation of Vegas was
derived by modifying Reno.

I We limit our discussion to Reno, which is both newer and better
performing than Tahoe. Section 5.4 discusses our results relative to
newer versions of TCP—Berkeley Network Release 2 (BNR2) and BSD
44,

.0

* * * * * * * * * * * * * * * * * * *
60 120 180 240 300 360 420 480 540 600
70 1ok M1 T "IIH Bl A0 B0 RO -0~ -0 0 A OO - AR OO O SO O - A0 O -0l [ER N B
60]L:
50 '
40
[a1]
2 30
20 -
10 CERCE)
. . e s [
1] d TR L. & & 3 L) IOl & & o L]) [i2 L} o | ! L L) T [L L] o ”'w 4 |5 L Ll |b< L) | | LX) g
0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 45 50 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
Time in seconds
L[] []
* * * * * * * * * * * * * * *
60 120 180 240 300 360 420 480 540 600
400 —j- -+ - ity b A A A A TR 04 A 0O R - 0 - O D4R [RAER
360 - : : : :
@ ; : : :
o
% ; : : :
[=2]
[=
c
Q N N
3 =N
L\‘\/\/ et
bl -l b
3.0 35 4.0 5 5.0 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

45 5, 5.5
Time in seconds

Figure 1: TCP Reno trace examples.

2.1 Simulator

Many of the results reported in this paper were obtained
from anetwork simulator. Even though several good sim-
ulators are available—e.g., REAL [12] and Netsim [5]—
we decided to build our own simulator based on the z-
kerndl. In thisenvironment, actual z-kernel protocol im-
plementations run on a simulated network. Specifically,
the simulator supports multiple hosts, each running a full
protocol stack (TEST/TCP/IP/ETH), and severd abstract
link behaviors (point-to-point connections and ethernets).
Routers can be modeled either as a network node running
the actual 1P protocol code, or as an abstract entity that
supportsa particular queuing discipline (e.g., FIFO).

The z-kernel-based ssimulator provides a redlistic set-
ting for evaluating protocols—each protocol is modeled
by the actual C code that implements it rather than some
more abstract specification. It isalso trivial to move pro-
tocols between the ssimulator and the real world, thereby
providing a comprehensive protocol design, implementa
tion, and testing environment.

One of the most important protocols available in the
simulator is called TRAFFIC—it implements TCP Inter-
net traffic based on tcplib [3]. TRAFFIC starts conver-
sations with interarrival times given by an exponential
distribution. Each conversation can be of type TELNET,

FTR, NNTP, or SMTPR, each of which expects a set of
parameters. For example, FTP expects the following pa
rameters: number of items to transmit, control segment
size, and theitem sizes. All of these parameters are based
on probability distributions obtained from traffic traces.
Finally, each of these conversations runs on top of itsown
TCP connection.

2.2 Trace Facility

Early in this effort it became clear that we needed good
facilities to analyze the behavior of TCP. We therefore
added code to the z-kerndl to trace the relevant changes
in the connection state. We paid particular attention to
keeping the overhead of this tracing facility as low as
possible, so as to minimize the effects on the behavior of
the protocol. Specifically, the facility writes trace data to
memory, dumpsit to afile only when thetest is over, and
keeps the amount of data associated with each trace entry
small (8 bytes).

We then devel oped varioustool sto analyze and display
the tracing information. The rest of this section describes
one such tool that graphically represents rel evant features
of the state of the TCP connection as a function of time.
Thistool outputs multiplegraphs, each focusing on a spe-
cific set of characteristics of the connection state. Fig. 1

gives an example. Since we use graphs like this through-
out the paper, we now explain how to read the graph in
some detail.

* * * * *
70 M :'CT)\I\:HII(I?IIIO 1206@

60 — :
50
40
30
20
-
1

05

180
B O A A HELEEN

KB

10 15 20 25 30 35

Time'in seconds

Figure 2: Common elementsin TCP trace graphs.

First, all TCPtrace graphshave certain featuresin com-
mon, asillustrated in Fig. 2. The circled numbersin this
figure are keyed to the following explanations:

1. Hash markson the z-axisindicatewhen an ACK was
received.

2. Hash marks at the top of the graph indicate when a
segment was sent.

3. The numbers on the top of the graph indicate when
then'” kilobyte (KB) was sent.

4. Diamondson top of the graph indicatewhen the peri-
odic coarse-grained timer fires. This does not imply
a TCP timeout, just that TCP checked to see if any
timeouts should happen.

5. Circles on top of the graph indicate that a coarse-
grained timeout occurred, causing a segment to be
retransmitted.

6. Solid verticd lines running the whole height of the
graph indicate when a segment that is eventualy re-
transmitted was originally sent, presumably because
itwaslost.? Noticethat several consecutive segments
are retransmitted in the example.

In addition to this common information, each graph
depicts more specific information. The bottom graph in
Fig. 1 isthe simplest—it shows the average sending rate,
caculated from the last 12 segments. The top graph in
Fig. 1 is more complicated—it gives the size of the dif-

2 For simplicity, we sometimes say a segment was lost, even though
al we know for sureis that the sender retransmitted it.

* * * * : *
60 120 180
70 — Eﬁw ULL [TR IBERE N NNl
WS CLLER] % i)
50 — ‘ e m—
g 30+ s
X ‘
20
10

10 15 20 25 30 35

Time in seconds

ad 5
Figure 3: TCP windows graph.

ferent windows TCP uses for flow and congestion control.
Fig. 3 shows these in more detail, again keyed by the
following explanations:

1. Thedashedlinegivesthethreshold window. Itisused
during slow-start, and marks the point a which the
congestionwindow growth changesfrom exponential
to linear.

2. The dark gray line gives the send window. It isthe
minimum of the sender’s buffer size and receiver’s
advertized window, and defines an upper limit to the
number of bytes sent but not yet acknowledged.

3. Thelight gray linegivesthe congestion window. Itis
used for congestion control, and isal so an upper limit
tothenumber of bytes sent but not yet acknowl edged.

4. The thin line gives the actual number of bytes in
transit at any given time, where by intransit we mean
sent but not yet acknowledged.

Since the window graph presents a lot of information,
it is easy to get lost in the detail. To assist the reader
in developing a better understanding of this graph, the
Appendix presents a detailed description of the behavior
depicted in Fig. 3.

The graphs just described are obtained from tracing
information saved by the protocol, and are, thus, available
whether the protocol is running in the simulator or over
ared network. The simulator itself also reports certain
information, such as the rate, in KB/s, at which datais
entering or leaving a host or a router. For a router, the
traces aso save the size of the queues as a function of
time, and the time and size of segments that are dropped
due to insufficient queue space.

3 Techniques

This section motivates and describes three techniques that
Vegas employstoincrease throughput and decrease | osses.
Thefirst techniqueresultsin amoretimely decisionto re-
transmit a dropped segment. The second technique gives
TCP the ability to anticipate congestion, and adjust its
transmission rate accordingly. The fina technique mod-
ifies TCP's dow-start mechanism so as to avoid packet
losses while trying to find the available bandwidth dur-
ing theinitial use of dow-start. The relationship between
our techniques and those proposed el sewhere are also dis-
cussed in this section in the appropriate subsections.

3.1 New Retransmisson Mechanism

Reno uses two mechanisms to detect and then retransmit
lost segments. The original mechanism, which is part of
the TCP specification, istheretransmit timeout. 1t isbased
onroundtriptime (RTT) and variance estimates computed
by sampling the time between when a segment is sent and
an ACK arrives. InBSD-based implementations, theclock
used to time the round-trip “ticks’” every 500ms. Checks
for timeouts a so occur only when this coarse-grain clock
ticks. The coarseness inherent in this mechanism implies
that the time interval between sending a segment that is
lost until there is a timeout and the segment is resent
is generally much longer than necessary. For example,
during a series of tests on the Internet, we found that for
losses that resulted in a timeout it took Reno an average
of 1100ms from the time it sent a segment that was lost
until it timed out and resent the segment, whereas |essthan
300mswould have been the correct timeout interval had a
more accurate clock been used.

This unnecessarily large delay did not go unnoticed,
and the Fast Retransmit and Fast Recovery mechanisms
where incorporated into the Reno implementation of TCP
(for amore detailed description see [15]). Reno not only
retransmits when a coarse-grain timeout occurs, but also
when it receives n duplicate ACKs (n isusually 3). Reno
sendsaduplicate ACK whenever it recel vesanew segment
that it cannot acknowledge because it has not yet received
all the previous segments. For example, if Reno receives
segment 2 but segment 3isdropped, it will send aduplicate
ACK for segment 2 when segment 4 arrives, again when
segment 5 arrives, and so on. When the sender sees the
third duplicate ACK for segment 2 (the one sent because

the receiver had gotten segment 6) it retransmits segment
3.

The Fast Retransmit and Fast Recovery mechanisms
are very successful—they prevent more than half of the
coarse-grain timeouts that occur on TCP implementa
tions without these mechanisms. However, some of our
early analysis indicated that eliminating the dependency
on coarse-grain timeouts would result in at least a 19%
increase in throughput.

Revd ACK for packet 10 (packets 11 and 12 are in transit)
poome Send packet 13 (which islost)

Revd ACK for packet 11
Send packet 14

Revd ACK for packet 12
Send packet 15 (which is also lost)

Should have gotten ACK for packet 13
Rcvd dup ACK for packet 12 (due to packet 14)

Vegas checks timestamp of packet 13 and decides to retransmit it
(Reno would need to wait for the 3rd duplicate ACK)

Revd ACK for packets 13 and 14

Sinceitis 1st or 2nd ACK after retransmission,

Vegas checks timestamp of packet 15 and decides to retransmit it
(Reno would need to wait for 3 new duplicate ACKS)

Figure 4: Example of retransmit mechanism.

Vegas, therefore, extends Reno’s retransmission mech-
anisms as follows. First, Vegas reads and records the
system clock each time a segment is sent. When an ACK
arrives, Vegas reads the clock again and does the RTT
calculation using thistime and the timestamp recorded for
the relevant segment. Vegas then uses this more accurate
RTT estimate to decide to retransmit in the following two
situations (asimple exampleisgivenin Fig. 4):

e When a duplicate ACK isreceived, Vegas checks to
see if the difference between the current time and
the timestamp recorded for the relevant segment is
greater than the timeout vaue. If it is, then Vegas
retransmits the segment without having to wait for n
(3) duplicate ACKs. In many cases, losses are either
so great or the window so small that the sender will
never receive three duplicate ACKs, and therefore,
Reno would have to rely on the coarse-grain timeout
mentioned above.

- -
330

-
550 660 880 990
{IMMWIIIMII\IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII o4

70 ERR R B 3 'L\ LR I A o [R TR YRR VR R I3] II“I\ II\III|||I|||||IIIIIIIIlIIIIIIIIIlIIIIIIIIIlIIIIII Y
o0 T %l’
50
y
40
g SO I e
20
10
0
t [l TR (LA R LR LR L L A
o5 10 15 20 25 30 35 40 45 50 X (g 65 70 75 80 85 90 95 100
Time in seconds
. .
220 330 440 770 880
1100 — 0 0 SRR OO0 . B RN
1000 -
900 —
» 800 -
3 700
& 600 —
2
£ 500
S 400
@ 300 —
200 |
100 — :
i
e -
y 35 40 5 5, . gg 65 70 75 80 85 90 95 100
Time in seconds
10
|||| II||I||||I II|||
5]
5 ||||| ||||
z II||| II||||
[5 — H
3 |||| ||||
2 I I
i I |||
| | || I"I Il
1o 15 : &0 45 0 55 60 : 75 8o 85 9o 95 100

Time in seconds

Figure 5: TCP Reno with no other traffic (throughput: 123 KB/s).

¢ When a non-duplicate ACK is received, if it is the
first or second one after aretransmission, Vegasagain
checks to see if the time interval since the segment
was sent islarger than thetimeout value. If itis, then
Vegas retransmits the segment. This will catch any
other segment that may have been lost previousto the
retransmission without having to wait for aduplicate
ACK.

In other words, Vegas treats the receipt of certain ACKs
as a hint to check if a timeout should occur. Since it
only checks for timeouts in rare occasions, the overhead
issmall. Notice that even though one could reduce the
number of duplicate ACKs used to trigger the Fast Re-
transmit from 3 duplicate ACKs to either 2 or 1, it isnot
recommended as it could result in many unnecessary re-
transmissions and because it makes assumptions about the
likelihood that packets will be delivered out of order.

The goal of the new retransmission mechanism is not
just to reduce thetime to detect lost packets from the third
duplicate ACK to the first or second duplicate ACK—
a small savings—but to detect lost packets even though

there may be no second or third duplicate ACK. The new
mechanism is very successful at achieving this goa, as
it further reduces the number of coarse-grained timeouts
in Reno by more than half.3 Vegas ill contains Reno’s
coarse-grain timeout codein case the new mechanismsfail
to recognize alost segment.

Related to making timeouts more timely, notice that
the congestion window should only be reduced due to
losses that happened at the current sending rate, and not
due to losses that happened at an earlier, higher rate. In
Reno, it is possible to decrease the congestion window
more than once for losses that occurred during one RTT
interval.* Incontrast, Vegas only decreases the congestion
window if the retransmitted segment was previously sent
after the last decrease. Any losses that happened before
the last window decrease do not imply that the network

3 This was tested on an implementation of Vegas which did not have
the congestion avoidance and slow-start modification described later in
this section.

4Thisproblemin the BSD versionsof Reno hasalso been pointed out
by Sally Floyd[4].

- Ethernets —_—

Host la — —— Host 1b
Host2a — Router 200 KBytes/sec Router — Host 2b
1 50ms delay 2
Host 3a — — Host 1c

Figure 6: Network configuration for smulations.

is congested for the current congestion window size, and
therefore, do not imply that it should be decreased again.
This change is needed because Vegas detects |osses much
sooner than Reno.

3.2 Congestion Avoidance M echanism

TCP Reno’s congestion detection and control mechanism
usesthelossof segmentsasasignal that thereiscongestion
inthe network. It has no mechanism to detect theincipient
stages of congestion—beforel osses occur—so they can be
prevented. Reno isreactive, rather than proactive, in this
respect. As aresult, Reno needs to create losses to find
the available bandwidth of the connection. This can be
seen in Fig. 5, which showsthe trace of a Reno connection
sending 1IMB of data over the network configuration seen
in Fig. 6, with no other traffic sources; i.e.,, only Hostla
sending to Host1b. In this case, the router queue size is
ten—each packet is 1.4KB— and the queuing discipline
isFIFO.

AsseeninFig. 5, Reno’smechanism to detect the avail -
able bandwidthis to continually increase itswindow size,
using up buffers aong the connection’s path, until it con-
gests the network and segments are lost. It then detects
theselosses and decreases itswindow size. Consequently,
Reno is continually congesting the network and creating
its own losses.® These losses may not be expensive if
the Fast Retransmit and Fast Recovery mechanisms catch

51t is possibleto set the experiment in such away that there arelittle
or no losses. This is done by limiting the maximum window size such
that it never exceedsthe delay-bandwidth product of the connection plus
the number of buffers at the bottleneck. However, this only workswhen
one knows both the available bandwidth and the number of available
buffers at the bottleneck. Given that one doesn’t have this information
under real conditions, we consider such experiments to be somewhat
unrealistic.

them, as seen with the losses around 7 and 9 seconds, but
by unnecessarily using up buffersat the bottleneck router it
iscreating losses for other connections sharing thisrouter.

As an aside, it is possible to set up the experiment in
such away that there are little or no losses. Thisisdone
by limiting the maximum window size such that it never
exceeds the delay-bandwidth product of the connection
plus the number of buffers at the bottleneck. This was
done, for example, in[7]. However, thisonly workswhen
oneknowsboth the avail able bandwidth and thenumber of
available buffers at the bottleneck. Given that one doesn’t
have this information under real conditions, we consider
such experiments to be somewhat unrealistic.

There are severa previoudy proposed approaches for
proactive congestion detection based on a common under-
standing of the network changes as it approaches conges-
tion (an excellent development is given in [10]). These
changes can be seen in Fig. 5 in the time interval from
45 to 7.5 seconds. One change is the increased queue
sizein theintermediate nodes of the connection, resulting
in an increase of the RTT for each successive segment.
Wang and Crowcroft’s DUAL algorithm [17] is based on
reacting to thisincrease of the round-trip delay. The con-
gestion window normally increases asin Reno, but every
two round-trip delays the agorithm checks to see if the
current RTT is greater than the average of the minimum
and maximum RTTsseen sofar. If itis, thenthealgorithm
decreases the congestion window by one-eighth.

Jain’s CARD (Congestion Avoidance using Round-trip
Delay) approach [10] is based on an analytic derivation
of a socialy optimum window size for a deterministic
network. The decision as to whether or not to change
the current window size is based on changes to both
the RTT and the window size. The window is adjusted

once every two round-trip delays based on the product
(WINdowS ze.urrent - WINdOWSze514) x (RTTcurrent -
RTT,;q) asfollows: if the result is positive, decrease the
window size by one-eighth; if theresultisnegativeor zero,
increase the window size by one maximum segment size.
Note that the window changes during every adjustment,
that is, it oscillatesaround its optimal point.

Another change seen as the network approaches con-
gestion is the flattening of the sending rate. Wang and
Crowcroft’sTri-S scheme[16] takes advantage of thisfact.
Every RTT, they increase the window size by one segment
and compare the throughput achieved to the throughput
when the window was one segment smaller. If the differ-
ence is less than one-haf the throughput achieved when
only one segment was in transit—as was the case at the
beginning of the connection—they decrease the window
by one segment. Tri-S calculates the throughput by divid-
ing the number of bytes outstanding in the network by the
RTT.

Vegas approach ismost similar to Tri-Sin that it looks
at changes in the throughput rate, or more specifically,
changesinthesending rate. However, it differsfrom Tri-S
inthat it calculates throughputs differently, and instead of
looking for a change in the throughput slope, it compares
the measured throughput rate with an expected throughput
rate. The basis for thisidea can be seen in Fig. 5 in the
region between 4 and 10 seconds. As the window size
increases we expect the throughput (or sending rate) to
also increase. But the throughput cannot increase beyond
the available bandwidth; beyond this point, any increase
in the window size only resultsin the segments taking up
buffer space at the bottleneck router.

Vegas uses thisidea to measure and control the amount
of extra datathisconnection hasintransit, where by extra
data we mean data that would not have been sent if the
bandwidth used by the connection exactly matched the
available bandwidth of the network. The goa of Vegas
isto maintain the “right” amount of extra datain the net-
work. Obvioudly, if a connection is sending too much
extra data, it will cause congestion. Less obvioudly, if
a connection is sending too little extra data, it cannot re-
spond rapidly enoughtotransient increasesin theavailable
network bandwidth. Vegas' congestion avoidance actions
are based on changesin the estimated amount of extradata
in the network, and not only on dropped segments.

We now describe the algorithm in detail. Note that

the algorithm is not in effect during slow-start. Vegas
behavior during dlow-start is described in Section 3.3.

First, define a given connection’s BaseRTT to be the
RTT of asegment when the connection isnot congested. In
practice, Vegas sets BaseRTT to the minimum of all mea-
sured round trip times; it iscommonly the RTT of thefirst
segment sent by the connection, before the router queues
increase dueto traffic generated by thisconnection.® If we
assume that we are not overflowing the connection, then
the expected throughput is given by:

Expected = WindowSize/ BaseRTT

where WindowSze is the size of the current congestion
window, which we assume for the purpose of thisdiscus-
sion, to be equal to the number of bytesin transit.

Second, Vegas calculates the current Actual sending
rate. This is done by recording the sending time for
a distinguished segment, recording how many bytes are
transmitted between the time that segment is sent and its
acknowledgement is received, computing the RTT for the
di stingui shed segment whenits acknowledgement arrives,
and dividing thenumber of bytestransmitted by thesample
RTT. This calculation is done once per round-trip time.”

Third, Vegas compares Actual to Expected, and adjusts
the window accordingly. Let Diff = Expected - Actual.
Notethat Diffispositiveor zero by definition, since Actual
> Expected impliesthat we need to change BaseRTT tothe
latest sampled RTT. Also define two thresholds, a < /3,
roughly corresponding to having too little and too much
extra data in the network, respectively. When Diff < «,
Vegas increases the congestion window linearly during
the next RTT, and when Diff > [, Vegas decreases the
congestion window linearly during the next RTT. Vegas
leaves the congestion window unchanged when o < Diff
<g.

Intuitively, the farther away the actual throughput gets
fromthe expected throughput, themore congestionthereis
in the network, which impliesthat the sending rate should
bereduced. The 3 thresholdtriggersthisdecrease. Onthe
other hand, when the actual throughput rate getstoo close

6 Although we don’'t know the exact value for the BaseRTT, our expe-
rience suggests our algorithm is not sensitive to errorsin the BaseRTT.

7We have made every attempt to keep the overhead of Vegas' con-
gestion avoidance mechanism as small as possible. To help quantify this
effect, we ran both Reno and Vegas between SparcStations connected by
an Ethernet, and measured the penalty to belessthan 5%. This overhead
can be expected to drop as processors becomefaster.

-

- - - - - - - - - -
110 220 330 440 550 660 770 880 990
70 1k 0 -H- 1 L L O H A A |-

KB

it

05 1.0 15 20 25 30 35 40

- - -

- .
330 550 660
1100 —
1000 —
900 —
800 —
700 —
600 —
500 —
400 —
300 —
200 —

Sending KB/S

45 50 55
Time in seconds

- - - -
110 220 440 770
A 1 -H- 00 R A

A
6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

- - -
880 990
NIRRT -+

100 —

s

it

05 1.0 15 20 25 30 35 40

-

240 -4
200 H

160 —

120 -

CAM KB/S

80 —

40 S

45 50 55
Time in seconds

A
6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

- - - - - - - - - -
110 220 330 440 550 660 770 880 990
1~ 00 LR R R LR R TR AT ORI AR R -+

H\H’\[‘r’\"t'(\\\\\\\\\\\\\\\\\\\\\\\\\\\\[\\\!\\M\\

it

05 1.0 15 20 25 30 35 40

10

Queue size in router
(&2

45 50 55
Time in seconds

610?k 6.5 7.0 7.5 8.0 8.5 9.0 9.5

0.5 1.0 15 2.0 25 3.0 3.5 4.0

T T T
55 6.0 6.5 7.0 75 8.0 8.5 9.0 9.5

Time in seconds

Figure 7: TCP Vegas with no other traffic (throughput: 169 KB/s).

to the expected throughput, the connection is in danger
of not utilizing the available bandwidth. The « threshold
triggersthisincrease. The overall goa isto keep between
a and extra bytesin the network.

Because the algorithm, as just presented, compares the
difference between the actual and expected throughput
rates to the o and 3 thresholds, these two thresholds are
defined in terms of KB/s. However, it is perhaps more
accurate to think in terms of how many extra buffers the
connection is occupying in the network. For example, on
a connection with a BaseRTT of 100ms and a segment
size of 1KB, if « = 30KB/sand 5 = 60KB/s, then we
can think of « as saying that the connection needs to be
occupying at least three extra buffers in the network, and

[saying it should occupy no more than six extra buffers
in the network.

In practice, we express o and g in terms of buffers
rather than extra bytes in transit. During linear in-
crease/decrease mode—as opposed to the slow-start mode
described below—we set o to one and 3 to three. This
can be interpreted as an attempt to use at least one, but
no more than three extra buffers in the connection. We
settled on these values for « and 5 as they are the small-
est feasible values. We want « to be greater than zero
so the connection is using at least one buffer at the bot-
tleneck router. Then, when the aggregate traffic from the
other connections decreases (as is bound to happen every
so often), our connection can take advantage of the extra

available bandwidth immediately without having to wait
for the one RTT delay necessary for the linear increase
to occur. We want /3 to be two buffers greater than o so
small sporadic changesin theavail able bandwidth will not
cregte oscill ationsin the window size. In other words, the
use of the o — 3 region provides a damping effect.

Even though the goal of this mechanism is to avoid
congestion by limiting the number of buffers used at the
bottleneck, it may not beableto achievethiswhenthereare
alarge number of “bulk data’ connections going through
abottleneck withasmall buffer size. However, Vegas will
successfully limit the the window growth of connections
with smaller round-trip times. The mechanisms in Vegas
are not meant to bethe ultimate sol ution, but they represent
a considerabl e enhancement to thosein Reno.

. . .
110 220
240 =1~ -~ 1~ - B I -0 OO0 O OO

200 —

160 —

120 —

CAM KB/S

80 —

40 —

0.5 2.0 2.5

Time in seconds
Figure 8: Congestion detection and avoidance in Vegas.

Fig. 7 shows the behavior of TCP Vegas when there
is no other traffic present; this is the same condition that
Reno ran under in Fig. 5. There isone new type of graph
in this figure, the third one, which depicts the congestion
avoi dance mechanism (CAM) used by Vegas. Onceagain,
we use a detailed graph (Fig. 8) keyed to the following
explanation:

1. The small vertical line—once per RTT—shows the
times when Vegas makes a congestion control deci-
sion; i.e, computes Actual and adjusts the window
accordingly.

2. The gray line shows the Expected throughput. This
is the throughput we should get if al the bytes in
transit are able to get through the connection in one
BaseRTT.

3. The solid line shows the Actual sending rate. We

caculate it from the number of bytes we sent in the
last RTT.

4. The dashed lines are the thresholds used to control
the size of the congestion window. The top line
corresponds to the « threshold and the bottom line
correspondsto the 3 threshold.

Fig. 9 shows a trace of a Vegas connection transfer-
ring one MByte of data, while sharing the bottleneck
router with teplib traffic. The third graph shows the out-
put produced by the TRAFFIC protocol simulating the
TCP traffic—the thin line is the sending rate in KB/s as
seen in 100ms intervals and the thick line is a running
average (size 3). The bottom graph shows the output of
the bottleneck link which has a maximum bandwidth of
200KB/s. The figure clearly shows Vegas congestion
avoidance mechanisms at work and how its throughput
adaptsto the changing conditionson the network. For ex-
ample, as the background traffic increases at 3.7 seconds
(third graph), the Vegas connection detectsit and decreases
its window size (top graph) which results in a reduction
in its sending rate (second graph). When the background
traffic dowsdown at 5, 6 and 7.5 seconds, the Vegas con-
nection increases itswindow size, and correspondingly its
sending rate. The bottom graph shows that most of the
time thereis a 100% utilization of the bottleneck link.

In contrast, Fig. 10 shows the behavior of Reno under
similar conditions. It showsthat thereisvery littlecorrela-
tion between thewindow size and the level of background
traffic. For example, as the background traffic increases
at 3.7 seconds, the Reno connection keeps increasing its
window size until there is congestion. This results in
losses, both to itself and to connections which are part of
the background traffic. The graph only shows thefirst 10
seconds of the one MBytetransfer; it took 14.2 seconds to
complete thetransfer. The bottom graph showsthat there
is under-utilization of the bottleneck link.

The important thing to take away from thisinformation
isthat Vegas increased throughput is not a result of its
taking bandwidth away from Reno connections, but due
to amoreefficient utilization of thebottleneck link. Infact,
Reno connectionsdo dlightly better when the background
traffic isrunningin top of Vegas as compared to when the
traffic is running on top of Reno (see Section 4).

- - - > - - - - -
110 220 330 440 550
18-~ OO 000 0B -S0R1 OO OB 01 00 000 - -4

- - -
990
H -1 H- AN 0O -]

880
’ THH-HH

- - - - - -
660 770
LRTRTUEE TRV RN TR T AR I

KB

b i - -t T
o5 10 15 20 25 30 a5 40 45 50 55 60 65 70 75 80 85 90 95 100
Time in seconds
* * MEEEL 228 %0 % a0 * 558 M 860 M %70 *s0 M M
240 =411 44 U - PRI 010 O 0000 001 0RO
210 -
180 = b\ N T AT
[S R S N ettt S ST SR N A
E 150 o e N
E 120 - S N A S S N S e
90 g s P
o [4T T T T T e T O T O R I I o S & L R R I I AR O I | |
60
30 -
i ™ " m i L 3 " " \v
e e B S i i T]
05 10 15 20 25 30 35 40 45 50 55 60 65 7.0 . 80 85 90 95 100
Time in seconds
0
o
N4
Q
w
w
<
o
=
T T T T T T T T T T T T T T T T T T T
os 10 15 2o 25 30 35 40 45 50 55 60 65 70 75 80 85 oo 95 100
Time in seconds
0
o
N4
5
o
5
o
<
]
[
2
8
°
o
T T T T T T T T T T T T T T T T T
o5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Time in seconds

Figure 9: TCP Vegas with tcpl

3.3 Modified Slow-Start M echanism

TCP is a ‘sdf-clocking’ protocol, that is, it uses ACKs
as a‘clock’ to strobe new packets into the network [7].
When there are no segments in transit, such as at the
beginning of a connection or after a retransmit timeout,
there will be no ACKs to serve as a strobe. Slow-start
is a mechanism used to gradually increase the amount of
datain-trangit; it attemptsto keep the segments uniformly
spaced. The basic ideaisto send only one segment when
gtarting or restarting after a loss, then as the ACKs are
received, to send and extra segment in addition to the
amount of data acknowledged in the ACK. For example,
if the receiving host sends an acknowledgment for each

ib-generated background traffic.

segment it receives, the sending host will send 1 segment
during the first RTT, 2 during the second RTT, 4 during
the third, and so on. It iseasy to see that the increase is
exponential, doubling its sending rate on each RTT.

Thebehavior of the slow-start mechanismcanbeseenin
Fig. 3and Fig. 10. It occurstwice, once duringtheinterval
between 0 and 1 seconds, and again intheinterval between
2 and 2.5 seconds; the latter after a coarse-grain timeout.
The behavior of theinitial dow-start is different from the
ones that occur later in one important respect. During the
initial slow-start, there is no a priori knowledge of the
available bandwidth that can be used to stop the expo-
nential growth of the window, whereas when s ow-starts

10

-
HHL--1

- - -
120 180 240 300
70 (et B R IR LRI T

°
-

- - > - - - - -
360 420 480 540 600 660 720
SRARAR Y O B R R RS TR T]} T\ A0 AN -0 R 0 0RO OO - OO - R 0 O {

KB

i
4.5 5.

Time in
.
-1

-
240

- -
0 180
- -0 A0 - O

Sending KB/S

4 "
HE -

35 4.0

i
.0

4.5 5

Timein

TRAFFIC KB/S

-

T T t L] 4

.0 55 6.0 9.0
seconds
L]

11

9.5 10.0

- - *
360 420
Foob et B A AR)

® a0 * sa0 660 * 720
1< 440 400 00O RO A - - - - O § < O O

.0 55
seconds

6.0 6.5 7.0

4!5 5.
Time in

0.5 1.0 15 2.0 25 3.0 35 4.0

Bottleneck output KB/S

T
6.0

T
6.5

7.0 16.0

!O 5!5
seconds

7.5 8.0 8.5 9.0 9.5

4!5 5.
Time in

0.5 1.0 15 2.0 25 3.0 35 4.0

Figure 10

occurs in the middle of a connection, there is the knowl-
edge of the window size used when the losses occurred
—Reno considers half of that value to be safe.

Whenever a retransmit timeout occurs, Reno sets the
threshold window to one half of the congestion window.
Thedow-start period endswhen the exponentially increas-
ing congestion window reaches the threshold window, and
from then on, theincrease is linear, or approximately one
segment per RTT. Since the congestion window stops its
exponential growth at half thepreviousvalue, itisunlikely
that losses will occur during the slow-start period.

However, there is no such knowledge of a safe window
size when the connection starts. If the initial threshold

11

T
6.0

T+
6.5

!0 5!5 7.0 9.0 9.5 1(;.0

seconds

7.5 8.0 8.5

: TCP Reno with tcplib-generated background traffic.

window value is too small, the exponentia increase will
stop too early, and it will take a long time—by using the
linear increase—to arrive at the optimal congestion win-
dow size. As aresult, throughput suffers. On the other
hand, if the threshold window is set too large, the con-
gestion window will grow until the available bandwidthis
exceeded, resulting in losses on the order of the number
of available buffers at the bottleneck router; these |osses
can be expected to grow as network bandwidth increases.

What isneeded isaway to find a connection’savailable
bandwidth which does not incur these kind of losses. To-
wards this end, we incorporated our congestion detection
mechanism into d ow-start with only minor modifications.

- - . -
40 80 120 160 200 240 280
O LR [N TR T T T I

70 i o U [
604" " 7"
50
40

o
2 30

20

10

=
0 -T—l— g
— i -~ —
0.5 1.0 15 2.0
Time in seconds
. . . .
40 80 120 160 200 240 280

600 — Aol A B AN O OO 0 -~ - - A t 1

500 —
@
o 400 —
>4
g 300 —
=]
5 200 -
»n

100 —

it SR
1.0 15)2:!0

Time in seconds

16 —

12 4

Queue size in router

.|.I.|.

LIy,

0.5 1.0 1.5 2o
Time in seconds

- - -
40 80 120 160 200 240 280

70 1 o I L (RS [(R T T T 1 (i

P CLLL T TEE T

.

50 ‘r

'
[20]
X
i
0.5 10 15 2.0
Time in seconds
40 80 120 160 200 240 280

600 =y~~~ - A WA 100 - A -t

500 —
@
o 400 —
X
g’ 300 —
=
& 200 —
n

100 —

by : 4
0.5 1.5 2.0

16 1

12 -

Queue size in router
o]
|

4 i
I|I|IIIIIII||IIII |II

0.5 10 1's 2.0
Time in seconds

Figure 11: TCP Vegas on the | eft, experimental on the right.

To be able to detect and avoid congestion during slow-
start, Vegas allows exponential growth only every other
RTT. In between, the congestion window stays fixed so
a valid comparison of the expected and actua rates can
be made. When the actua rate falls below the expected
rate by the equivaent of one router buffer, Vegas changes
from slow-start mode to linear increase/decrease mode.

The behavior of the modified slow-start can be seen in
Fig. 7 and Fig. 9. The reason that we need to measure
the actua rate with a fixed congestion window is that we
want the actual rate to represent the bandwidth allowed
by the connection. Thus, we can only send as much data
as is acknowledged in the ACK (during slow-start, Reno
sends an extra segment for each ACK received). This
mechanism is highly successful at preventing the losses
incurred during the initial slow-start period, as quantified
in the next section.

Two problems remain during any dow-start period.
First, segments are sent at a rate higher than the avail-
able bandwidth—up to twice the avail abl e bandwidth, de-
pending on the ACKing frequency (e.g., every segment

or every two segments). This results on the bottleneck
router having to buffer up to half of the data sent on each
RTT, thereby increasing the likelihood of losses during
the dow-start period. Moreover, as network speeds in-
crease, so does the amount of buffering needed. Second,
whileVegas congestion avoi dance mechanism during the
initial ow-start period is quite effective, it can till over-
shoot the available bandwidth, and depends on enough
buffering at the bottleneck router to prevent losses until
realizing it needs to slow down. Specificaly, if the con-
nection can handle a particular window size, then Vegas
will doublethat window size—and as aconsequence, dou-
ble the sending rate—on the next RTT. At some point the
available bandwidth will be exceeded.

We have experimented with a solution to both prob-
lems. To simplify the following discussion, we refer to
theadternativeversion of Vegaswith an experimental slow-
start mechanism as Vegas*. Vegas® isbased on using the
spacing of the acknowledgments to gauge the available
bandwidth. The ideais similar to Keshav's Packet-Pair
probing mechanism [13], except that it uses the spacing

12

of four segments sent during the slow-start period rather
than two. (Using four segments results in a more robust
algorithm than using two segments.) Thisavailable band-
width estimate is used to set the threshold window with
an appropriate vaue, which makes Vegas* less likely to
overshoot the avail able bandwidth.

Specifically, as each ACK is received, Vegas*® sched-
ules an event at a certain point in the future, based on
its available bandwidth estimate, to increase the conges-
tion window by one maximum segment size. Thisisin
contrast to increasing the window immediately upon re-
ceiving the ACK. For example, assumethe RTT is100ms,
the maximum segment size is 1 KByte, and the available
bandwidth estimate is currently 200 KB/s. During the
dow-start period, time is divided into intervas of length
equa tooneRTT. If duringthecurrent RTT interval weare
expecting 4 ACKs to arrive, then Vegas* uses the band-
width estimate (200K B/s) to guess the spacing between
the incoming ACKs (1KB / 200K B/s = 5ms) and as each
ACK isreceived, it schedules an event to increase the con-
gestion window (and to send a segment) at 20ms (5 x 4)
in the future.

The graphsin Fig. 11 show the behavior of Vegas (left)
and Vegas* (right) during the initial low-start. For this
set of experiments, the available bandwidth was 300K B/s
and there were 16 buffers at the router. Looking at the
graphs on the left, we see that a packet islost at around
1 second (indicated by the thin vertica bar) as aresult of
sending at 400KB/s. This is because Vegas detected no
problems at 200K B/s, so it doubled its sending rate, but
in this particular case, there were not enough buffers to
protect it from thelosses. The bottom graph demonstrates
the need to buffer half of the data sent on each RTT as a
result of sending at arate twice the available bandwidth.

The graphs on the right illustrate the behavior of Ve-
gas*. It sets the threshold window (dashed line) based
on the available bandwidth estimate. This resultsin the
congestion window halting its exponential growth at the
right time—when the sending rate equals the available
bandwidth and preventing the losses. The middle graph
shows that the sending rate never exceeds the available
bandwidth (300K B/s) by much. Finally, the bottom graph
showsthat Vegas* doesnot need as many buffersas Vegas.

Notice that while the available bandwidth estimate
could be used to jump immediately to the avail able band-
width by using rate control during one RTT interval, con-

gestion would result if more than one connection did this
at the sametime. Even thoughit ispossibleto congest the
network if more than one connection does sl ow-start &t the
same time, thereis an upper bound on the number of bytes
sent during the RTT when congestion occurs regardless
of the number of connections simultaneously doing slow-
start—about twicethe number of bytesthat can be handled
by the connection. Thereisno such limitif morethan one
connection jumps to use the available bandwidth at once.
Hence, we strongly recommend against doing this unless
it is known a priori that there are no other connections
sharing the path, or if there are, that they won’t increase
their sending rate at the same time.

Although these traces illustrate how Vegas*'s experi-
mental slow-start mechanism doesin fact address the two
problemswith Vegas outlined above, simulation dataindi-
cates that the new mechanism does not have a measurable
impact on throughput, and only marginally improves the
lossrate. While additional simulations might expose situ-
ations where Vegas* is more beneficia, we have decided
to not include these modifications in Vegas. Also, the
results presented in Section 4 are for Vegas, not Vegas*.

4 Performance Evaluation

This section reports and anayzes the results from both
the Internet and the simulator experiments. The results
from the Internet experiments are evidence that Vegas
enhancements to Reno produce significant improvements
on both the throughput (37% higher) and the number of
losses (less than half) under real conditions. The sim-
ulator experiments, allow us to also study related issues
such as how do Vegas connections affect Reno connec-
tions, and what happens when &l connections are running
over Vegas. Notethat because it is simple to move a pro-
tocol between the ssimulator and the “real world”, the all
numbers reported in this section are for exactly the same
code

4.1 Internet Results

We first present measurements of TCP over the Internet.
Specifically, we measured TCP transfers between the Uni-
versity of Arizona (UA) and the Nationa Institutes of
Health (NIH). The connection consists of 17 hops, and
passes through Denver, St. Louis, Chicago, Cleveland,

13

Table 1: IMBytetransfer over the Internet.

Reno | Vegas-1,3 | Vegas-2,4
Throughput (KB/s) 53.00 72.50 75.30
Throughput Ratio 1.00 137 142
Retransmissions (KB) | 47.80 2450 29.30
Retransmit Ratio 1.00 051 0.61
Coarse Timeouts 3.30 0.80 0.90

Table 2: Effects of transfer size over the Internet.
1024KB 512KB 128KB

Reno | Vegas | Reno | Vegas | Reno | Vegas
Throughput (KB/s) 53.00 | 7250 | 52.00 | 72.00 | 31.10 | 53.10
Throughput Ratio 1.00 1.37 | 1.00 1.38 | 1.00 1.71
Retransmissions (KB) | 47.80 | 24.50 | 27.90 | 10.50 | 22.90 4.00
Retransmit Ratio 1.00 051 | 1.00 0.38 | 1.00 0.17
Coarse Timeouts 3.30 0.80 | 1.70 020 | 1.10 0.20

New York and Washington DC. The results are derived
from a set of runs over a seven day period from January
23-29, 1994. Each run consists of a set of seven transfers
from UA to NIH—Reno sends IMB, 512K B, and 128K B,
aversion of Vegaswitha = 1 and § = 3 (denoted Vegas-
1,3) sends IMB, 512K B, and 128K B, and second version
of Vegaswitha = 2 and 3 = 4 (denoted Vegas-2,4) sends
1MB. Weinserted a45 second del ay between each transfer
inarunto givethe network a chance to settle down, arun
started approximately once every hour, and we shuffled
the order of the transferswithin each run.

Table 1 shows the results for the IMB transfers. De-
pending on the congestion avoidance thresholds, it shows
between 37% and 42% improvement over Reno’ sthrough-
put with only 51% to 61% of the retransmissions. When
comparing Vegas and Reno within each run, Vegas out-
performs Reno 92% of the time and across al levels of
congestion; i.e., during both the middle of the night and
during periods of high load. Also, the throughput was
a little higher with the bigger thresholds, since the Ve-
gas connection used more buffers at the bottleneck router
which could be used tofill bandwidth gaps occurring when
the background traffic slowed down. However, the higher
buffer utilization at the bottleneck also resulted in higher
losses and dlightly higher delays. We prefer the more
conservative approach of using fewer resources, so have
settled on avoidance thresholdsof « = 1 and 5 = 3.

Because we were concerned that Vegas' throughput im-

provement depended on largetransfer sizes, wea sovaried
thesize of thetransfer. Table2 showsthe effect of transfer
size on both throughput and retransmissions for Reno and
Vegas-1,3. First, observethat Vegas does better relativeto
Reno as the transfer size decreases. In terms of through-
put, we see an increase from 37% to 71%. The results
are similar for retransmissions, as the relative number of
Vegas retransmissions goes from 51% of Reno’sto 17%
of Reno’s.

Notice that the number of kilobytes retransmitted by
Reno starts to flatten out as the transfer size decreases.
When we decreased thetransfer size by half, from 1IMB to
512K B, we see a42% decrease in the number of kilobytes
retransmitted. When we further decrease the transfer size
to one-fourth its previous value, from 512KB to 128K B,
the number of kilobytes retransmitted only decreases by
18%. Thisindicates that we are approaching the average
number of kilobytes retransmitted due to Reno’s slow-
start losses. From these results, we conclude that there
are around 20K Bs retransmitted during slow-start, for the
conditionsof our experiment.

On the other hand, the number of kilobytesretransmit-
ted by Vegas decreases almost linearly with respect to the
transfer size. Thisindicates that Vegas eliminates nearly
all losses during slow-start due to its modified slow-start
with congestion avoidance. Note that if the transfer size
issmaller than about twice the bandwidth-delay product,
thentherewill be nolossesfor neither Vegas nor Reno (as-

14

Table 3: One-on-one (300KB and 1MB) transfers.

Reno/Reno | Reno/Vegas | Vegas/Reno | Vegas/Vegas
Throughput (KB/s) 60/109 61/123 66/119 74/131
Throughput Ratios 1.00/1.00 1.02/1.13 1.10/1.09 1.23/1.20
Retransmissions (KB) 30/22 43/1.8 1.5/18 0.3/0.1
Retransmit Ratios 1.00/1.00 1.43/0.08 0.05/0.82 0.01/0.01

suming the bottleneck router has enough buffersto absorb
temporary sending rates above the connections available
bandwidth).

4.2 Simulation Results

This subsection reportsthe results of series of experiments
using the z-kernel based simulator. The simulator allows
usto better control the experiment, and in particul ar, gives
us the opportunity to see whether or not Vegas gets its
performance at the expense of Reno-based connections.
Note that all the experiments used in this subsection are
on the network configuration shown in Fig. 6. We have
also run other topologies and different bandwidth-delay
parameters, with similar results.

421 One-on-One Experiments

We begin by studying how two TCP connectionsinterfere
with each other. To do this, we start a IMB transfer, and
then after a variable delay, start a 300KB transfer. The
transfer sizes and delays are chosen to ensure that the
smaller transfer is contained completely within the larger.

Table 3 gives the results for the four possible combi-
nations, where the column heading Reno/Vegas denotes
a 300K B transfer using Reno contained within a IMByte
transfer using Vegas. For each combination, the table
gives the measured throughput and number of kilobytes
retransmitted for both transfers; e.g., in the the case of
Reno/Vegas, the 300K B Reno transfer achieved a61KB/s
throughput rate and the 1M Byte Vegas transfer achieved
a 123K B/sthroughput rate.® The ratios for both through-
put rate and kilobytes retransmitted are relative to the
Reno/Reno column. The values in the table are averages
from 12 runs, using 15 and 20 buffersin the routers, and

8 Comparing the small transfer to the large transfer in any given col-
umnis not meaningful. Thisis becausethelarge transfer was ableto run
by itself during most of the test.

with the delay before starting the smaller transfer ranging
between 0 and 2.5 seconds.

The main thing to take away from these numbers is
that Vegas does not adversely affect Reno’s throughput.
Reno’s throughput stays pretty much unchanged when it
is competing with Vegas rather than itself—theratios for
Reno are 1.02 and 1.09 for Reno/Vegas and Vegas/Reno,
respectively. Also, when Reno competeswith Vegasrather
than itself, the combined number of kilobytes retransmit-
ted for the pair of competing connections drops signifi-
cantly. The combined Reno/Reno retransmits are 52KB
compared with 45KB for Reno/Vegas and 19KB for Ve-
gas/Reno. Findly, note that the combined Vegas/Vegas
retransmits are less than 1KB on the average—an indica
tionthat the congestion avoidance mechanism isworking.

Since the probability that there are exactly two connec-
tions at one time is small in rea life, we modified the
experiment by adding tcplib background traffic. The re-
sultswere similar except for the Reno/Vegas experiment in
which Reno only had a 6% increase in its retransmission,
versus the 43% when there was no background traffic.

This 43% increase in the losses of Reno for the
Reno/Vegas case is explained as follows. The Vegas
connection starts first, and is using the full bandwidth
(200K B/s) by the time the Reno connection starts. When
Vegas detectsthat the network is starting to get congested,
it decreases its sending rate to between 80 and 100K B/s.
The losses incurred by Reno (about 48KB), are approx-
imately the losses Reno experiences when it is running
by itself on a network with 100 to 120K B/s of available
bandwidth and around 15 available buffers at the bottle-
neck router. The reason the losses where smaller for the
300K B transfer in the Reno/Reno experiment isthat by the
time the 300K B transfer starts, the IMB connection has
stopped transmitting dueto thelossesinitsslow-start, and
it won't start sending again until it times out at around 2
seconds. A Reno connection sending 300KB when there
is 200K B/s of available bandwidth and 20 buffers at the

15

Table 4: IMByte transfer with tcplib-generated background Reno traffic.

Reno | Vegas-1,3 | Vegas-2,4
Throughput (KB/s) 58.30 89.40 91.80
Throughput Ratio 1.00 153 1.58
Retransmissions (KB) | 55.40 27.10 29.40
Retransmit Ratio 1.00 0.49 0.53
Coarse Timeouts 5.60 0.90 0.90
bottleneck router only losses about 3K B. the 1IMbytetransfer.

This type of behavior is characteristic of Reno: by
dightly changing the parameters in the network, one can
observe major changes in Reno’s behavior. Vegas, on the
other hand, does not show as much discontinuity in its
behavior.

4.2.2 Background Traffic

We next measured the performance of adistinguished TCP
connection when the network isloaded with traffic gener-
ated fromtcplib. That is, theprotocol TRAFFICisrunning
between Hostlaand Host1bin Fig. 6, and a 1M Bytetrans-
fer is running between Host2a and Host2b. In this set of
experiments, the tcplib traffic is running over Reno.

Table 4 gives the results for Reno and two versions
of Vegas—Vegas-1,3 and Vegas-2,4. We varied these two
threshol dsto study the sensitivity of our a gorithmtothem.
The numbers shown are averages from 57 runs, obtained
by using different seedsfor tcplib, and by using 10, 15 and
20 buffersin the routers.

The table shows the throughput rate for each of thedis-
tinguished connections using the three protocols, aong
with their ratio to Reno’s throughput. It aso gives the
number of kilobytesretransmitted, theratio of retransmits
toReno’s, and theaverage number of coarse-grained time-
outs per transfer. For example, Vegas-1,3 had 53% better
throughput than Reno, with only 49% of thelosses. Again
note that there is little difference between Vegas-1,3 and
Vegas-2,4.

These simulations tell us the expected improvement
of Vegas over Reno: more than 50% improvement on
throughput, and only half the losses. The resultsfrom the
one-on-one experiments indicate that the gains of Vegas
are not made at the expense of Reno; this belief isfurther
supported by thefact that the background traffic’ sthrough-
put is mostly unaffected by the type of connection doing

We aso ran these tests with the background traffic us-
ing Vegas rather than Reno. This simulates the situation
where the whole world uses Vegas. The throughput and
thekilobytesretransmitted by the IMBytetransfersdidn’t
change significantly (less than 4%).

4.2.3 Other Experiments

We tried many variationsof the previous experiments. On
the whole, the results were similar, except for when we
changed TCP's send-buffer size. Below we summarize
these experiments and their results.

¢ Two-way backgroundtraffic. There havebeen reports
of change in TCP's behavior when the background
traffic is two-way rather than one-way [18]. Thus,
we modified the experiments by adding tcplib traffic
from Host3b to Host3a. The throughput ratio stayed
the same, but the loss ratio was much better: 0.29.
Reno resent more data and Vegas remained about the
same. The fact that there wasn't much change is
probably due to the fact that tcplib already creates
some 2-way traffic—TELNET connections send one
byte and get one or more bytes back, and FTP con-
nections send and get control packets before doing a
transfer.

¢ Different TCP send-buffer sizes. For al the experi-
ments reported so far, we ran TCP witha 50K B send-
buffer. For this experiment, we tried send-buffer
sizes between 50K B and 5K B. Vegas' throughputand
losses stayed unchanged between 50KB and 20K B;
fromthat point on, as the buffer decreased, so did the
throughput. This was due to the protocol not being
ableto keep the pipefull.

Reno’s throughput initially increased as the buffers
got smaller, and thenit decreased. It alwaysremained
under the throughput measured for Vegas. We have
previously seen this type of behavior while running

16

Reno on the Internet. If we look back at Fig. 5, we
see that as Reno increases its congestion window,
it uses more and more buffers in the router until it
loses packets by overrunning the queue. If we limit
the congestion window by reducing the size of the
send-buffer, we may prevent it from overrunning the
router’s queue.

5 Discussion

Throughput and losses are not the only metrics by whicha
transport protocol isevaluated. Thissection discussessev-
eral other issuesthat must be addressed. 1t also comments
on the relationship between thiswork and other effortsto
improve end-to-end performance on the Internet.

5.1 Fairness

If there is more than one connection sharing a bottleneck
link, we would like for each connection to receive an
equa share of the bandwidth. Unfortunately, given the
limited amount of information currently available at the
connection endpoints, thisis unlikely to happen without
somehelpfromtherouters. Giventhat no protocol islikely
to be perfectly fair, we need a way to decide whether its
level of fairnessisacceptableor not. Also, giventhat sofar
the Internet community has found Reno’slevel of fairness
acceptable, we decided to compare Vegas' fairness levels
to Reno’'sand judgeit in those terms.

Before there can be any comparisons, we need a
metric. We decided to use Jain’'s fairness index [11],
which is defined as follows: given a set of throughputs

x1, %9, ..., 2,) thefollowing function assigns afairness
J g
index to the set:
(s =)’
f(ml,;r?,...,x) ===
! nZ?:l IZ2

Given that the throughputs are nonnegative, the fairness
index aways results in numbers between 0 and 1. If al
throughputsare the same, thefairnessindexis 1. If only &
of the n users receive equal throughput and the remaining
n — k usersreceive zero throughput, the fairness index is

We ran smulations with 2, 4 and 16 connections shar-
ing abottleneck link, where al the connections either had
the same propagation delay, or where one half of the con-
nections had twice the propagation delay of the other half.

Many different propagation delays were used, with the
appropriate results averaged.

Inthecase of 2 and 4 connections, with each connection
transferring 8 MB, Reno was dightly more fair than Ve-
gas when al connections had the same propagation delay
(0.993 vs. 0.989), but Vegas was dightly more fair than
Reno when the propagation delay waslarger for half of the
connections (0.962 vs. 0.953). In the experiments with
16 connections, with each connection transferring 2MB,
Vegas was morefair than Reno in all experiments regard-
less of whether the propagation delays were the same or
not (0.972 vs. 0.921).

To study the effect that Reno connections have over
Vegas connections (and vice versa) weran 8 connections,
each sending 2 MB of data. The experiment consisted of
running al the connections on top of Reno, al the connec-
tions on top of Vegas, or one half on top on Reno and the
other half on top of Vegas. There was littledifference be-
tween the fairness index of the eight connections running
aparticular TCP implementation (Vegas or Reno) and the
fairness index of the four connections running the same
TCP implementation and sharing the bottleneck with the
four connections running the other TCP implementation.
Similarly, we saw little difference in the average size of
the bottleneck queue.

In another experiment, we ran four connections over
backgroundtraffic. For thisexperiment, Vegaswasaways
more fair than Reno. Overdll, we conclude that Vegasis
no lessfair than Reno.

52 Stability

A second concernisstability—itisundesirablefor aproto-
col to cause the Internet to collapse as the number of con-
nections increases. In other words, as the load increases,
each connection must recognize that it should decrease its
sending rate. Up to the point where the window can be
greater than one maximum segment size, Vegas is much
better than Reno at recogni zing and avoiding congestion—
we have aready seen that Reno does not avoid congestion,
on the contrary, it periodically creates congestion.
Oncetheload isso high that on average each connection
can only send less than one maximum segment’s worth
of data, Vegas behaves like Reno. This is because this
extreme condition implies that coarse-grain timeouts are
involved, and Vegas uses exactly the same coarse-grain
mechanism as Reno. Experimental results confirm this

17

O
]

—— 45MbpsLink

Router
— 100 Mbps Link

Large TCP

TS Tcplib Traffic Sources
Transfers

(2 or 3hostsper TS)

Figure 12: Complex simulation network.

intuition: running 16 connections, with a 50ms one-way
propagation delay, through a router with either 10 or 20
buffers and 100 or 200K B/s of bandwidth produced no
stability problems.

We have adso simulated complex network topologies
like the one shown in Fig. 12, which consists of 16 traffic
sources each of which contains two or three hosts. Each
hogt, inturn, isrunning tcplib-based traffic. The rectangu-
lar boxes represent sources of “bulk data’ transfers. The
resulting traffic consists of nearly athousand new connec-
tions being established per simulated second, where each
connection is either a TELNET, FTR, SMTP or NNTP
conversation. No stability problems have occurred in any
of our simulationswhen all of the connectionsare running
Vegas.

In summary, there is no reason to expect Vegas to lead
to network collapse. One reason for thisisthat most of
Vegas mechanisms are conservative in nature—its con-
gestion window never increases faster than Reno’s (one
maximum segment per RTT), the purpose of the conges-
tion avoidance mechanism is to decrease the congestion
window before losses occur, and during slow-start, Vegas
stops the exponentia growth of its congestion window
before Reno would under the same conditions.

5.3 QueueBehavior

Given that Vegas purposdaly tries to occupy between one
and three extrabuffersalong the path for each connection,

it seems possible that persistent queues could form at the
bottleneck router if the whole world ran Vegas. These
persistent queues would, in turn, add to the latency of all
connectionsthat crossed that router.

Since the anayticd tools currently available are not
good enough to redlistically model and anayze the behav-
ior of either Reno or Vegas, we must rely on simulations
to answer thisissue. Our simulations show that average
gueue sizes under Reno and Vegas are approximately the
same. However, they also show that TELNET connections
in tcplib experience between 18 and 40% less latency, on
average, when all the connections are Vegas instead of
Reno. This seems to suggest that if the whole world ran
Vegas, Internet latency would not be adversely affected.

5.4 BSD Variations

TCP has been arather fluid protocol over the last severa
years, especially initscongestion control mechanism. Al-
thoughthe general form the original mechanism described
in [7] has remained unchanged in all BSD-based imple-
mentations (e.g., Tahoe, Reno, BNR2, BSD 4.4), many
of the “constants’ have changed. For example, some im-
plementations ACK every segment and some ACK every
other segment; some increase the window during linear
growth by one segment per RTT and some increase by
half asegment per RTT plus 1/8th the maximum segment
size per ACK received during that RTT; and finally, some
use the timestamp option and some do not.

18

We have experimented with most of these variationsand
havefound the combination used in our version of Reno, as
reported in this paper, to be the among the most effective.
For example, wefound thelatest version of TCP, that found
in BSD 4.4-lite,?achieves 14% worse throughput than our
Reno during Internet type simulations[2]. Also, otherg[1]
have compared Vegas with the SunOS implementation
of TCP, which is derived from Reno, and have reached
conclusions similar to those in this paper.

5.5 Alternative Approaches

In addition to improving TCP's congestion control mech-
anism, there is a large body of research addressing the
genera question of how to fairly and effectively alocate
resources in the Internet. We concludethissection by dis-
cussing the relevance of TCP Vegas to these other efforts.

One example is gaining much attention is the question
of how to guarantee bandwidth to real-time connections.
The basic approach requires that a more intelligent buffer
manager be placed in the Internet routers[14]. One might
guestiontherelevance of TCP Vegasinlight of such mech-
anisms. We believe end-to-end congestion control will
remain very important for two reasons. First, asignificant
fraction of the datathat will flow over the Internet will not
be of area-time nature; it will be bulk-transfer applica
tions (e.g., image transfer) that want as much bandwidth
as is currently available. These transfers will be able to
use Vegas to compete against each other for the available
bandwidth. Second, even for a real-time connection, it
would not be unreasonable for an application to request
(and pay for) a minimally acceptable bandwidth guaran-
tee, and then use a Vegas-like end-to-end mechanism to
acquire as much additional bandwidth as the current load
alows.

As another example, selective ACKs [8, 9] have been
proposed as away to decrease the number of unnecessarily
retransmitted packets and to provideinformationfor abet-
ter retransmit mechanism than the onein Reno. Although
the selective ACK mechanism is not yet well defined, we
make the following observations about how it compares
to Vegas. First, it only relates to Vegas' retransmission
mechanism; selective ACKs by themselves affect neither
the congestion nor the the slow-start mechanisms. Sec-
ond, there is little reason to believe that selective ACKs

9 Thisistheimplementation of TCP availableat ftp.cdrom.com, dated
4/10/94.

can significantly improve on Vegas in terms of unnec-
essary retransmissions, as there were only 6KB per MB
unnecessarily retransmitted by Vegas in our Internet ex-
periments. Third, selective ACKs have the potentia to
retransmit lost data sooner on future networks with large
delay/bandwidth products. 1t would be interesting to see
how Vegas and the selective ACK mechanism work in
tandem on such networks. Finaly, we note that selective
ACKSsrequire a change to the TCP standard, whereas the
Vegas modifications are an implementation change that is
isolated to the sender.

6 Conclusions

We haveintroduced severd techniquesfor improving TCP,
including a new timeout mechanism, anovel approach to
congestion avoidance that tries to control the number of
extrabuffersthe connection occupiesin the network, and a
modified slow-start mechanism. Experiments on both the
Internet and using a simulator show that Vegas achieves
37 to 71% better throughput, with one-fifth to one-half
as many bytes being retransmitted, as compared to the
implementation of TCP in the Reno distribution of BSD
Unix. We have aso given evidence that Vegas is just as
fair asReno, that it doesnot suffer from stability problems,
and that it does not adversely affect latency.

A Detailed Graph Description

To assist the reader develop a better understanding of the
graphs used throughout this paper, and to gain a better
insight of Reno’s behavior, we describe in detail one of
these graphs. Figure 13 is atrace of Reno when thereis
other traffic through the bottleneck router. The numbers
in parenthesis refer to the type of linein the graph.

In general, output is adlowed while the UNACK-
COUNT (4) (number of bytes sent but not acknowledged)
is less than the congestion window (3) and less than the
send window (2). The purpose of the congestion window
isto prevent, or more redlisticaly in Reno's case, to con-
trol congestion. The send window isused for flow control,
it prevents data from being sent when there is no buffer
space available at the receiver.

The threshold window (1) is set to the maximum vaue
(64K B) at the beginning of the connection. Soon &fter the
connection is started, both sides exchange information on
the size of their receive buffers, and the send window (2)

19

. - * * : .
60 120 180
70 Eﬁ'l 1 B |”I|H - . A A -HE DA HE R
gl AR oy %
50 — —
40 - L :
o ¢ @
20 —
10

10 15 20 25 30 35

Time in seconds

05

Figure 13: TCP windows graph.

is set to the minimum of the sender’s send buffer size and
thereceiver’s advertized window size.

The congestion window (3) increases exponentialy
while it is less than the threshold window (1). At 0.75
seconds, losses start to occur (indicated by thetall vertica
lines). More precisdly, the vertica lines represent seg-
ments that are later retransmitted (usually because they
were lost). At around 1, second alossis detected after re-
ceiving 3 duplicate ACKsand Reno’s Fast Retransmit and
Fast Recovery mechanisms go into action. The purpose
of these mechanismsisto detect losses before aretransmit
timeout occurs, and to keep the pipe full (we can think of
aconnection’spath as awater pipe, and our goal isto keep
it full of water) whilerecovering from these | osses.

The congestion window (3) is set to the maximal a-
lowed segment size (for thisconnection) and the UNACK-
COUNT isset to zero momentarily, allowing the lost seg-
ment to be retransmitted. The threshold window (1) is set
to half the value that the congestion window had before
thelosses (it isassumed that thisisasafe level, that losses
won't occur at this window size).

The congestion window (3) is dso set to this value
after retransmitting the lost segment, but it increases with
each duplicate ACK (segments whose acknowledgement
number is the same as previous segments and carry no
data or new window information). Since the receiver
sends a duplicate ACK when it receives a segment that
it cannot acknowledge (because it has not received al
previous data), the reception of a duplicate ACK implies
that a packet has left the pipe.

Thisimpliesthat the congestion window (3) will reach
the UNACK-COUNT (4) when half thedatain transit has
been received at the other end. From this point on, the
reception of any duplicate ACKs will alow a segment

to be sent. Thisway the pipe can be kept full at half the
previousval ue (sincelossesoccurred at the previousva ue,
itisassumed that the available bandwidthisnow only half
its previousvaue). Earlier versions of TCP would begin
theslow-start mechanism when losseswere detected. This
implied that the pipe would almost empty and then fill up
again. Reno’s mechanism allowsit to stay filled.

At around 1.2 seconds, a non-duplicate ACK is re-
ceived, and the congestion window (3) is set to the value
of the threshold window (1). The congestion window was
temporarily inflated when duplicate ACKs were received
as a mechanism for keeping the pipe full. When a non-
duplicate ACK isreceived, the congestion window isreset
to half the value it had when losses occurred.

Since the congestion window (3) isbel ow the UNACK -
COUNT (4), no more data can be sent. At 2 seconds, a
retransmit timeout occurs (see black circle on top), and
data starts to flow again. The congestion window (3)
increases exponentially while it is below the threshold
window (1). A littlebefore 2.5 seconds, a segment is sent
that will later be retransmitted. Skipping to 3 seconds,
we notice the congestion window (3) increasing linearly
because it is above the threshold window (1).

Acknowledgments

Thanks to Sean W. O’ Malley for his help and insightful
comments and to Lew Berman from the National Library
of Medicine for providing a machine on the East Coast
that we could use in our experiments.

References

[1] J-S. Ahn, P. B. Danzig, Z. Liu, and L. Yan. Expe-
rience with TCP Vegas: Emulation and Experiment.
In Proceedings of the SGCOMM '95 Symposium,
Aug. 1995. In press.

L. S. Brakmoand L. L. Peterson. Performance Prob-
lemsin BSD4.4 TCP. ACM Computer Communica-
tion Review, 1995. In press.

(2]

[3] P Danzig and S. Jamin. tcplib: A Library of
TCP Internetwork Traffic Characteristics. Technical
Report CS-SY S-91-495, Computer Science Depart-

ment, USC, 1991.

[4 S Floyd. TCP and Successive Fast Retrans-
mits. Technical report, Lawrence Berkeley Labo-
ratory, 1994. Available from anonymous ftp from

ftp.ee.lbl.gov:papers/fastretrans.ps.

20

(5]

(6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A. Heybey. Thenetwork simulator. Technical report,
MIT, Sept. 1990.

N. C. Hutchinson and L. L. Peterson. The x-kernd:
An architecture for implementing network proto-
cols. IEEE Transactions on Software Engineering,
17(1):64-76, Jan. 1991.

V. Jacobson. Congestion Avoidance and Control.
In Proceedings of the SGCOMM ’88 Symposium,
pages 314-32, Aug. 1988.

V. Jacobson and R. Braden. TCP Extensions for
Long-Delay Paths. Request for Comments 1072,
Oct. 1988.

V. Jacobson, R. Braden, and D. Borman. TCP Exten-
sionsfor High Performance. Reguest for Comments
1323, May 1992.

R. Jain. A Deay-Based Approach for Congestion
Avoidance in Interconnected Heterogeneous Com-
puter Networks. ACM Computer Communication
Review, 19(5):56—71, Oct. 1989.

R. Jain. The Art of Computer Systems Performance
Analysis: Techniquesfor Experimental Design, Mea-
surement, Simulationand Modeling. John Wiley and
Sons, Inc., New York, 1991.

S. Keshav. REAL: A Network Simulator. Technica
Report 88/472, Department of Computer Science,
UC Berkeley, 1988.

S. Keshav. A Control-Theoretic Approach to Flow
Control. In Proceedings of the S GCOMM '91 Sym-
posium, pages 3-15, Sept. 1991.

D. C..S S R. Braden. Integrated Servicesin the
Internet Architecture: an Overview. Request for
Comments 1633, Sept. 1994.

W. R. Stevens. TCP/IP Illustrated, Volume 1: The
Protocols. Addison-Wedey Publishing Co., New
York, 1994.

Z. Wang and J. Crowcroft. A New Congestion
Control Scheme: Slow Start and Search (Tri-S).
ACM Computer Communication Review, 21(1):32—
43, Jan. 1991.

Z. Wang and J. Crowcroft. Eliminating Periodic
Packet Losses in 4.3-Tahoe BSD TCP Congestion
Control Algorithm. ACM Computer Communication
Review, 22(2):9-16, Apr. 1992.

21

[18] L. Zhang, S. Shenker, and D. D. Clark. Observations

onthe Dynamics of aCongestion Control Algorithm:
The Effects of Two-Way Traffic. In Proceedings
of the SGCOMM '91 Symposium, pages 133-147,
Sept. 1991.

List of Figures

1 TCPRenotraceexamples.
2 Common elementsin TCP trace graphs. .
3 TCPwindowsgraph.
4 Example of retransmit mechanism.
5 TCP Reno with no other traffic (through-
put: 123KB/s)..
6 Network configuration for simulations. . .
7 TCP Vegas with no other traffic (through-
put: 169KB/s)..
8 Congestiondetection and avoidancein Ve-
085 . .
9 TCP Vegas with tcplib-generated back-
groundtraffic.
10 TCP Reno with tcplib-generated back-
groundtraffic.
11 TCP Vegas on the left, experimental on
theright.
12 Complex simulation network.
13 TCPwindowsgraph.
List of Tables
1 1MBytetransfer over theInternet.
2 Effectsof transfer size over the Internet. .
3 One-on-one(300KB and IMB) transfers.
4 1MByte transfer with tcplib-generated

background Reno traffic.

A WWN

o o

10

11

12
18

14
14
15

22

