
Experiences with Network Simulation

Lawrence S. Brakmo and Larry L. Peterson

Department of Computer Science

University of Arizona

Tucson, AZ 85721-0077

{brakmo,llp} @cs.arizona.edu

Abstract

Simulation is a critical tool in developing, testing, and eval-

uating network protocols and architectures. This paper de-

scribes x-Sire, a network simulator based on the x-kernel,

that is able to fully simulate the topologies and traffic pat-

terns of large scale networks. It also illustrates the capabilities

and usefulness of the simulator with case studies. Finally,

based on our experiences using x-Sire, we identify a set of

principles (guidelines) for network simulation, and present

concrete examples that quantify the value of these principles,

along with the cost of ignoring them.

1 Introduction

As the Internet becomes an integral part of our daily lives,

major changes in its infrastructure are being proposed. These

changes are designed to support the increasing traffic and to

provide the services necessary for future applications. It is

imperative that we have tools to analyze and compare these

proposed mechanisms before they are deployed. Since the

Internet is a large, production network, it is not practical to

conduct controlled experiments directly on the network it-

self. This means we need simulation environments powerful

enough to model the Internet’s behavior, as well as analysis

tools to help us understand the results.
Most large networks exhibit very complex behavior as

a result of three basic factors: (1) subtle protocol interac-

tions, (2) complicated network topologies, and (3) complex

traffic patterns. The last two factors have an obvious impact

on simulation—we must be able to simulate topologies with

Permission to make digital/hard copv of part or all of this work
for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otharwise, to republlsh, ,to post .On
servers, or to redistribute to lists, requires prior specific
permission and/or a fee.

SIG METRICS ’96 5/96 PA, USA

o 1996 ACM 0-89791 -793 -619610005,.. S3.50

hundreds of hosts, and the simulator must be able to recreate

the traffic patterns found on real networks. The first factor is,

in many respects, the tricky one. This is because individual

protocols behave in unexpected ways when combined with

other protocols to implement a complete network. To make

matters worse, variations in the implementation of a single

protocol-even when it conforms with the abstract specifi-

cation of the protocol-can have a dramatic impact on the

protocol’s behavior and performance. Finally, protocol be-

havior and traffic patterns are highly inter-related. In short,

the simulator must facilitate working with actual protocols,

rather than just abstract specifications of protocols.

This paper describes a suite of tools to simulate and an-

alyze network and protocol behavior. The centerpiece of

this suite is z-Sire, a network simulator based on the z-

kernel [6] which satisfies the requirements enumerated in the

previous paragraph. Section 2 describes the simulator—as

well as the related analysis tools—and compares it to exist-

ing simulators and emulators. Section 3 then gives two case

studies that illustrate the usefulness of the tools in doing per-

formance debugging. Next, Section 4 describes some very

practical lessons we have learned about doing realistic net-

work simulations. These lessons serve to re-enforce general

rules of simulation, highlighting their relevance to network

simulation. Finally, Section 5 offers some conclusions.

2 Simulator and Analysis Tools

When designing a network simulator, one must balance the

issues of accuracy and execution time. In general, higher

accuracy results in slower simulations. However, as comput-

ing power continues to increase, the cost of the simulations
becomes less significant, but never irrelevant. Our approach

is to create a simulator that is as accurate as we can make

it, and then to introduce optional mechanisms to increase the

speed (lower the accuracy) as the need arises. This approach,

of going from more accurate to less accurate simulations,
allows us to gauge the effect that the lower accuracy has on

the simulations. Then we can decide if the resulting lower

accuracy simulations are good enough to be useful.

80

This section first describes the structure of z-Sire in

terms of three fundamental components—huts, nodes, and

load. It then compares z-Sire to existing simulators and

emulators, presenting the relative strengths and weaknesses

of each approach. Finally, it discusses the analysis tools.

2.1 Links

Physical links can usually be simulated in software very ac-

curately, at least to the level of the written specification.

Simulating a link’s real behavior accurately may entail some

analysis of real implementations to find, among other things,

the likelihood of losses due to noise. For example, accurately

simulating an ethernet should include the ability to simulate

collisions and exponential backoff. As another example,

simulating ATM networks implies the use of small packets,

increasing the complexity level—and execution time—of a

simulation.

The architecture of z-Sire closely models the interactions

between a link and the hosthetwork adapter. The lowest

software layer in each node (driver) is tightly coupled to the

type of link (network) to which it is connected; together they

model the interactions that occur in a real computer between

the network, the adaptor, and the device driver.

The three main operations of the driver/network interace

in x-Sire are: (1) query the network, for example to check

if it is busy; (2) send a packet, and (3) callback the host

to model interrupts. For example, a node connected to an

Ethernet would first query the network to see if it is busy. If

it is not, it can then send the packet. Otherwise, it registers a

callback to be notified when the network is not busy. Once

the packet has been transmitted successfully, the driver gets

a callback notifying it of this fact so it can delete its copy of

that packet, However, since Ethernets allow collisions, the

interactions can become more complicated. For example, a

query may return that the network is not busy when it occurs

right after another host has started transmitting, resulting in a

collision of packets. In this case, both hosts get a callback at

some later time indicating that the transmission failed. Each

host then schedules a retransmission at a later time based on

an exponential backoff mechanism.

The simulator currently supports point-to-point links,

Ethernet links (with and without collisions), and generalized

multiple-access links. The first and last type of links allow the

user to specify several parameters, including the bandwidth,

delay, byte overhead per packet, a minimum and maximum

packet size, and a loss or corruption probability. The second

link type exactly models an Ethernet.

2.2 Nodes

Physical links are used to connect network nodes, which are
usually either routers or hosts. To capture their behavior, we

need to consider the characteristics of both the processor and

the software, thereby simulating both the delays introduced

by the nodes, and the algorithms that they run.

&VNET

Ethernet Point-to-Point

Figure 1: Example Protocol Graph.

In z-Sire, the software running on a node is represented

in one of two ways: (1) by an z-kernel protocol graph (an

example is shown in Figure 1), or (2) a program that imple-

ments an abstract specification of the node. When using a

protocol graph (case 1), each protocol in the graph is given

by the actual C code that implements the complete protocol,

In other words, the former case can be viewed as supporting

a direct execution simulation. Thus, a router can be simu-

lated with an actual implementation of 1~ or by an abstract

specification that models some queuing discipline, such as

FIFO. Note that when a protocol is given as a module in the

protocol graph, then this is exactly the same implementation

that runs in the z-kernel. This makes it possible to move a

protocol between a simulated network and a real network.

To simulate the processor accurately, one needs to ac-

count for the delays resulting from the execution of the code

invoked to handle each packet. For an even more accurate

simulation, one needs to also add some jitter to these delays,

which is be the result of interactions between different sub-

systems. Simulating the delays and jitter with total accuracy

is probably not practical, as the jitter maybe due to cache and

TLB effects. Even if one could simulate all of these details,

it may not be the best thing to do as it ties the results of the

simulation to a specific model of hardware. z-Sire addresses

this issue by allowing the protocol code to specify delays

during which the node does no other processing; incoming

packets are not be processed during such a delay. These de-

lays might be based on measurements of the code running

on an actual processor and can be specified by a uniform or

normal distribution.

2.3 Load

Network load is usually the result of many applications exe-

cuting on numerous hosts. In the case where one is interested

in studying the behavior under realistic load, realistic traffic

sources are of the utmost importance. For example, traffic

created by multiple large TCP transfers is radically different

from traffic generated by multiple FIT, TELNET, SMTP and

NNTP connections.

The first step for having realistic traffic is to use a com-

mon implementation of the underlying protocols—z-Sire

gets this from the protocol graph. Next, we need a way

to model the traffic. Here, z-Sire contains a protocol for

simulating Internet traffic based on tcplib [4]. Tcplib is a li-

brary that models Internet traffic sources based on empirical

data collected at different Internet gateways, and it has been

shown to produce realistic traffic patterns [13]. This traffic

model is realized as a protocol called TRAFFIC, which sits

at the top of the protocol graph; i.e., this protocol generates

work for TCP.

The TRAFFIC protocol starts conversations with inter-

arrival times given by an exponential distribution. Each con-

versation can be of type TELNET, FTP, NNTP or SMTP and

expects a set or parameters. For example, FIT conversations

are parametrized by the number of items to transmit, control

segment sizes, and the individual item sizes. All of these

parameters are obtained from tcplib and are based on prob-

ability distributions obtained from real traffic traces. Each

of these conversations runs on top of its own TCP connec-

tion, meaning that each conversation adapts to the network

conditions according to TCP’S congestion control algorithm,

One last feature of the traffic simulation protocol is that

it is instrumented in such a way that the major traffic char-

acteristics are independent of the underlying protocols and

router congestion mechanisms-the traffic itself is of course

affected by these differences. What we mean by major traf-

fic characteristics are the start times of each conversation,

the type of conversation, and the parameters for that con-

versation, This feature allows us to compare the effects of

changes—e.g., to the TCP implementation—have on the traf-

fic. Thus, we can determine the effects on the routers and

link utilization when we go from the one implementation of

TCP to another.

Finally, there are other protocols (everything is a proto-

col in the x-kernel) that model other types of transfers; for

example, TCP bulk transfers.

2.4 Related Work

Some of best known freely available network simulators are

REAL [10], Netsim [5] and the recently released ns from

LBL’s Network Research Groupl. These simulators do not

support common implementations of protocols (direct exe-

cution). Instead they contain code that simulates the major

characteristics of the protocol. One problem with this ap-

proach is that it misses some of the behavior present in the

common protocol implementations. In particular, it is our

experience that in evaluating the different BSD implemen-

tations of TCP, running the actual TCP code is preferred to
running an abstract specification of the protocol; the latter is

mostly useful for rapid experimentation.

For example, we have found the actual behavior of timers

in the BSD implementations of TCP to be quite important.

Specifically, the round-trip time (RTT) measurements are

done with a clock that ticks every half a second, resulting

in very coarse estimates of the RTI’. This affects the real-

time behavior of the protocol because retransmit timeouts

tend to be much longer than the actual RTT. Many existing

simulators use more accurate RIT measurements, resulting

in retransmission timeouts that are much smaller than those in

BSD TCP. The consequence is that packet losses that result

in timeouts have a lesser effect on the throughput in the

simulator than it does in the BSD implementation.

As another example, both the Netsim and REAL im-

plementations of TCP adhere to only the basic congestion

control algorithm: the window increases linearly and de-

creases multiplicatively, and R’IT measurement and timeouts

are based on fine-grained clocks rather than the 500ms gran-

ularity present in the BSD implementations of TCP. More

importantly, it would be very hard, if not impossible, to do

a full implementation of TCP under either framework due to

architectural constraints. As a result, neither simulator could

be used to study the exact behavior of one of the common
implementations of TCP (like the BSD implementations) to

see if there are any problems with it.

Another important feature is that since x-Sire protocols

are just z-kernel protocols, one can use the simulator while

implementing and debugging anew protocol, and when done,

just move it to any system based on the z-kernel infi-astructure

to be tested under real network conditions.

An alternative to simulation is emulation [1], a tech-

nique that uses workstations connected by a real network,

with modifications to the operating system to simulate slower

links and larger propagation delays. Under this framework,

simulated time and real time are the same. Some of the ad-

vantages of emulators are that they run real protocols, actual

behavior like processing overheads need not be simulated,

and a two minute simulation only takes two minutes to run.

There are some disadvantages, however, such as the cost of

the necessary hardware (to emulate a network with five hosts

you need at least five workstations), the fact that you cannot

emulate a host or a link that isfuster than the actual hardware,

and the real-time behavior of the software is tied to specific

hardware. A final disadvantage has to do with the available

timer resolution, which can result in artifacts affecting the

accuracy of the emulation. For example, an emulator with
timer accuracy of lms implies that one cannot emulate the

exact delay involved in sending packets smaller than 500

bytes on a 500KB/s link.

Finally, it is not really an issue of simulation versus

emulation. Simulation, emulation, and tests on the actual

network should all be considered part of the practitioner’s

repertoire. The confirmation of one technique’s results with

another technique serves an important function in the scien-

tific process.
1Seehttp://www-nrg.eeJbl, gov/ns/,

82

3 Case Studies1100 ,

1

1000 .’’:.... .,

900
:,

l“’ ‘
,,,,,,,

~ 800
/

%700 :.: .,

8

.; ,,,[?

L

,:

E6W .,:,,;. .:: ..,:
a

,., ,:, ::,

p,::”’”’”” :--:.:,-..::

340r ;!.

8 300 ... ;(:.i. ; : ;
,, .,’111’

. ,

4 /’

,,!111”
100.:,’:...:: :. ..:!

1:0 2:0 3!0 4!o 5!o .0 7.o 8,0 9.0 ld.o1/.0 1~.Od.O d.Ol?,O
Lei’. L.;*

lH@’L-

Figure 2: Time-sequence plot of TCP-Lite with no other

traffic (throughput: 701U3/s).

2.5 Analysis Tools

Running realistic simulations is only the first step, and not

necessarily the most time consuming step. Analyzing the

results usually involves more work than running the simu-

lations themselves, emphasizing the need for tools to aid in

this analysis. For the rest of the section we describe some of

the tools available with the x-Sire simulator.

These tools can be divided into two levels. At the high

level, some of the protocols write summary information to

a database at the end of each experiment. For example,

TCP bulk transfers save the number of kilobytes successfully

transmitted, the kilobytes resent, the number of TCP time-

outs, the largest timeout, and so on. Routers save average

link utilization, average queue sizes, number of packets and

bytes lost.

At the low level, some protocols and routers can also

save detailed trace information. ‘l%ese traces are analyzed

and displayed using a set of tools that are part of the z-Sire

package. The most detailed traces are obtained from the

more complex protocols, and they have proven invaluable

in our analysis and understanding of these protocols. For

example, the a-kemel/z-Sim versions of the different TCP

implementations have been augmented with calls to trace

all the relevant state of the protocol, such as the size of the

different windows and buffers, the time when packets are

sent or received, information about retransmitted data, and

so on.

These traces can be examined either graphically, show-

ing the main characteristics of a protocol or router, or in full

detail as a list of events. The common procedure is to first

examine the traces graphically, then if anything interesting
or unusual shows up, to examine the traces in full detail.

Examples of the graphical output from the tools are

shown in the next section, where we consider some case

studies showing the usefulness of the simulator.

This section gives two case studies that illustrate how we have

used mSim and the associated analysis tools to performance

debug TCP [15],

The most widely used implementations of TCP—Tahoe,

Reno and Lite-are named after the BSD Unix distributions

they were a part of. Each succeeding generation, starting

with TCP Tahoe and ending with TCP Lite, was the result

of adding more features to its predecessor. For example,

TCP Reno augments TCP Tahoe with a better loss recove-

ry mechanism, called Fast Retransmit [14], which resulted

in throughput improvements of 10 to 20%. TCP Lite aug

ments TCP Reno by implementing the Big Window and the

Protection Against Wrapped Sequence Numbers options [8].

As will be seen later in this section, newer implemen..

tations of TCP not only include desirable features but also

sometimes introduce performance bugs. Hence the need for

tools with which to analyze the behavior of TCP connections.

Graphical tools are generally the most useful.

Figure 2 shows a time-sequence graph of a particuhw

TCP transfer. Each mark in the graph represents the time

when a packet was sent. For example, the mark at coordi-

nates (t,s) indicates that a packet whose payload starts with

the Sth byte was sent at time t. Time-sequence plots have

been the standard way of examining the behavior of TCP con..

nections. From these plots we can see, among other things,

when packets are retransmitted (as seen by vertical gaps in

the sequence of marks), and when timeouts occur (as seen by

large time intervals when no packets are sent).

As useful as time-sequence graphs are, it is our experi-

ence that a graph showing most of the internal state of the

protocol is more informative. Such a graph could be used

to analyze not only the coarse behavior of TCP, but also to

study the details of a particular implementation. There is, of

course, a price to be paid as a result of increasing the level of

information-a steeper learning curve. After a long period

of experimentation, we converged to the top graph shown in

Figure 3.

TCP is a window based protocol. It uses windows tc]

control the number of bytes that the sender is allowed to have

in transit. A byte is considered in transit if it has been sent

but has not yet been acknowledged by the receiver.

The top graph in the figure is a time plot of the value

of these windows. For example, the light gray line shows

the congestion window. This window is used for congestion

control, and is increased either exponentially (when starting

the connection or when restarting after a pause), or linearly
(all other times). The thin black line, usually following the

congestion window, indicates the exact number of bytes that

are in transit. Its value must always be less than or equal to
the other windows.

The top graph in Figure 3 shows a lot more information

than just the value of the windows used by TCP. Due to a lack

of space, we can only describe the most important features

83

● ● ●

100

80

60

2 40

20

0

I 1! 111 Ill !!

1!0 2!0 3!0 4!0 5!0 6’ 7’0 8!0 9’0 Id.o1} 0 iiO 1~.O1=/.0I ,0
t?me in seconds

Figure 3: TCP-Lite with no other traffic (throughput:

70KBIS).

here. The circles at the top of the graph represent retransmit

timeouts (RTOS), the thin vertical lines going from the top to

the bottom of the graph show the time that a packet, which is

later retransmitted, was originally sent. The small tic marks

at the 100KB level indicate the time when packets were sent;

they are analogous to the tic marks in Figure 2.

We are aware that anyone looking at this graph for the

first time may be confused by its complexity, There are

options to limit the amount of information that is displayed

in these graphs; however, we wanted to show how much

information can be displayed in a clear way, at least to a

trained eye familiar with the workings of TCP.

3.1 Analysis of BSD-Lite TCP

As mentioned earlier, one of the strengths of the simulator

is its ability to execute some of the most common protocol

implementations. For example, the Tahoe, Reno and Lite

implementations of TCP.

As the first step in the analysis, we created a simple

network consisting of two ethernets joined by a point-to-

point link supporting a 200KB/s bandwidth and 50ms delay.

A host in one of the ethernets sends one MB of data to a host

on the other ethernet. Even though there is no other traffic

present, the average throughput is only 70KBIs.

The plots in Figures 2 and 3 were taken from the traces

of this transfer. We have already described the meaning of

the top plot in Figure 3. The middle plot shows the average

sending rate in KB/s. Note the huge spike in the sending
rate at 8 seconds, which results in a timeout at 10.5 seconds.

Finally, the bottom graph shows the queue size at the router.

Each vertical bar represents the range of the queue size during

a 100ms interval. For example, we see that between 4.0

and 4.1 seconds the minimum queue size was one, and the

maximum queue size was eight.

The features we have described are sufficient to uncover

likely problem areas in the behavior of TCP-Lite. For exam-

ple, we see that the timeout periods when no data is sent are

lasting between 1.5 and 2.5 seconds. Given that the round

trip times (RTT) are less than 200ms, it seems worthwhile to

do a more detailed analysis of the retransmit timeout (RTO)

mechanism in TCP-Lite.

Another sign of possible problems is the huge spike in

the sending rate at eight seconds. Given that the bottleneck

bandwidth is 200 KB/s, it seems unwise to send packets at

a rate of 1250 KB/s; the cause for this burst of packets can

be seen in the top graph (for a detailed explanation see [2]).

Finally, the last indication of trouble is the fact that there

are so many RTOS. This implementation of TCP contains

the Fast Retransmit and Fast Recovery mechanisms; these

mechanisms are supposed to prevent the type of timeouts we

see in the time interval between 12 and 15 seconds.

$.60A:

m

*

a
x 40

20

1!0 2!0 3!0~lm ,$)=ond*5!o 6!0 7!0 8!0

Figure 4: TCP-Lite with fixes and no other traffic (through-

put: 128 KB/s).

The analysis of the detailed traces uncovered a series of

problem with the BSD-Lite implementation of TCP. Some of

the problems, like the cause of the sending rate spike, were

caused by bugs in the code (specifically a bug in the header

prediction code). Other problems, like the duration of the

RTOS, were caused by suboptimal algorithms. All together,
more than five problems were uncovered [2]. Figure 4 shows

the behavior, under the same scenario, of a modified imple-

mentation of TCP that had these problems fixed. This is the

plot that someone familiar with both TCP and our graphs

would have expected to see initially.

To gauge the full effect of the modifications we also

ran more complex simulations consisting of more complex

topologies where some of the hosts were sources of tcplib

based traffic. These simulations showed that one could ex-

pect a20% increase in throughput, as compared to the original

84

● ●

70+I{IIH Ii 1II t I Illtllwnmmlllull I I II I! I+ I*IIII I u Itittanwmg WI18HII

60
50

40

g 30
20
10

0
I u II Ill I

0!5 1!0 1!5 2!0 2!5 3!o 3!5 4!o 4!5 5!0 5!5 6!0 6!5 7!o 7!5 8!o 8!5 9!o 9!5 ld.o
TimeInsesonds

~ 180
X 150
g 120

$:

30

.0
ltne in seeonds

m 240-.

mme in seconds

Figure 5: TCP bulk transfer sharing a link with tcplib gener-

ated traffic.

implementation, in wide area connections.

3.2 Analysis of TCP Congestion Control

TCP’S standard approach to full bandwidth utilization is to

continually increase the amount of bytes in trunsituntil losses

occur. At this time, TCP responds to the packet loss by re-

ducing the amount of bytes in transit by half. The only

sign of congestion TCP is able to interpret is packet loss.

Therefore, the interplay of both mechanisms, full bandwidth

utilization and congestion control, result in a periodic pattern

of congestion and recovery periods. That is, TCP must cre-

ate congestion to recognize that there is no more bandwidth

available, even when it is the only source of traffic.

We can see this behavior in Figure 4. In the time interval

between 3 and 6.5 seconds, we see an increase in the amount

of data in transit from 16KB to 38 KB. At the beginning, from

3 to 4.2 seconds, we see an increase from 140 to 200KIYs in

the sending rate,z as a result of the increase of the amount

of data in transit. Since the available bandwidth is only

200 KBIs, any further increase in the amount of data in transit

has to be absorbed by the bottleneck buffers, as seen in the

bottom graph.
Figure 5 shows the behavior of TCP when it is sharing

a link with tcplib based traffic. The middle graph shows

the traffic level, the bottom graph shows the bottleneck link

utilization; the link’s maximum bandwidth is 200KWS. It is

2Since TCP is a self-clocking protocol—i.e. it uses the reception of
acknowledgments to trigger new transmissions-its sending rate is closely

related to its throughput.

easy to see, for example in the period between 5.5 and 7 sec-

onds, that TCP continually increases its congestion window,

and thus the amount of data in transit, regardless of what the

background traffic is doing. TCP is oblivious of other traffic

until the network gets so congested that packets are lost.

It certainly would be preferable to have a congestion

avoidance mechanism that detects the incipient stages of con-

gestion, so it can avoid congestion rather than control it. The

earlier observation that an increase in the amount of data iiv

transit cannot result in an increase of the throughput beyond

the available bandwidth is a useful notion tha can form the

basis of a congestion avoidance mechanism.

The general idea is as follows, we first define a predicted

bandwidth as a function of the amount of data in transit and

we compare it to the actual bandwidth (sending rate). The

difference between these two bandwidths is proportional to

the amount of router buffer space consumed this connection.

All that remains is to set buffer utilization goals that are

then used to trigger either an increase or a decrease of the

congestion window.

This congestion avoidance mechanism was incorporated

into a new implementation of TCP, named Vegas, with the

goal of testing its effectiveness at preventing congestion [3].

The simulator proved invaluable as a debugging, tuning, and

measuring tool. The fact that protocols can be moved be-

tween the simulator and platforms supporting the z-kernel

allowed us to easily measure the performance of TCP Vegas

on the Internet. Both sets of measurements, in the simulator

and on the Internet, showed a major decrease in losses and

a large increase in throughput-TCP Vegas had more new

mechanisms than just congestion avoidance.

4 Guidelines for Network Simulations

There is a wealth of literature on the subject of simulation;

for example, see [9] and [11] for a good overview. Among

the issues presented in the literature are general principles all

simulation experiments should follow to insure the validity

of the results. Typically, these principles are presented in

general terms, and it is up to the experimenter to apply them

to their particular case.

This section goes beyond these general principles tcj

present some very concrete guidelines dealing with network

simulations, in particular. Most of these guidelines involve

the application of a well known rule, but they are worth enu-

merating because they contain realistic evidence of what can

happen when these rules are not followed. That is, these

examples help to quantify the value of the general simula-.

tion principles, as well as the cost of ignoring them. It is

our observation that many papers in the networking literature

ignore some of these guidelines.
Most of the examples used in this section were obtained

from the two simulation networks shown in Figures 6 and 7,

The first, shown in Figure 6, consists of a simple topology

with 7 nodes. The second simulated network, shown in

85

5ms

8ms ❑“7

SINK

L-1 — 100Mbps

SOURCES ‘--- 45Mbs

Figure6: Simple Simulation Network.

Figure 7,ismuch more complex.3 It consists of 16 traffic

sources, each consisting of two or three hosts running tcplib

based traffic. The rectangular boxes represent sources of

“bulk data” transfers. The resulting traffic consists of nearly

a thousand new connections being established per simulated

second, where each connection is either a TELNET, J?I’P,

SMTP or NNTP conversation.

TS

d

TS
TS

,7

TS

28ms

TS

TS

TS

— 45Mbps Lbdc

&
SDSC

LA

TS

TS
TS

TS

— 100 Mtrps Li~

Ts TwIUJT’MIC -%tsrcs

{5 hasts)

o RoBter

Figure 7: Complex Simulation Network.

4.1 Sensitivity to Network Parameters

Protocols and communication networks generally deal with

bits and packets, both of which are discrete entities. Many

protocol components, such as retransmit timers, also behave

in a discrete manner. Many network parameters, such as the

number of buffers at a router, are discrete quantities. Due to

this discrete nature, small changes in the parameters defining

a network experiment can have a considerable effect in the

outcome of an experiment. The following two examples

illustrate the sensitivity of a simulation to different settings

of such discrete values.

The first example involves the number of buffers at a

router. Here, we are running an experiment that simply mea-

sures the throughput TCP can achieve across a simulated

network operating under some load. In the B SD implemen-

tation of TCP, time is measured by counting the number of

times a timer fires. As data is being sent over the connec-

tion, losses due to congestion result in a temporary halt in the

transmission. In some cases, if there are multiple losses, the

transmission is restarted only after a retransmit timeout. This

delay generally lasts for two ticks of the 500ms clock. There

are situations were for one number of buffers at the router, the

transmission hiatus (gap) starts right before the timer tires,

and since the hiatus only lasts for two ticks of the clock,
the result is the hiatus lasts for about 500ms. Increasing the

number of buffers by just one can result in delaying the start

of the transmission hiatus until after the timer fires, so now

two clock ticks represent about 1000ms rather than 500ms.4

3This network models a subset of the ANS backbone. It has major

routers at Los Angeles, San Francisco, Chicago and Cleveland. Three

supercomputer centers provide sources of large “bulk data” transfers.

4The same effect can also be obtained when keeping the number of

buffers constant, but by changing the time when the test starts relative to the

tick of the 500ms clock.

For example, we have seen simulations where increasing the

number of buffers from 22 to 23 leads to a 34?Z0decrease in

throughput.

A second example of the unexpected effects that changes

in the simulation parameters can have is seen when running

two TCP transfers at the same time. In this case, the exper-

iment consists of two competing TCP transfers, with some

delay between the start of each transfer. For a particulw

simulation, a delay of 170ms between the start of the two

transfers resulted in a throughput of 76.lKB/s for the first

transfer and 76.2KBIs for the second transfers. Changing

the delay to 150ms results in throughputs of 87.8KWS and

75.91CWS, respectively, a change of more than 15Y0.

These examples demonstrate the sensitivity of a simula-

tion to seemingly trivial differences in the settings of certain

network parameters. The guideline is to vary the simulation

parameters over a range as large as possible. The basic prin-

ciples behind it are: (1) simulate the right cases, (2) perform

sensitivity analysis, and (3) give confidence intervals with

your results.

4.2 Analyzing Results

One should also look at the results from every experiment

to catch any instances in which the results vary greatly from

the average. These instances may expose problems in the

experiment, problems in the algorithms, or problems with

the implementation that surface only sporadically. Looking

just at averages may result in missing vital information. In

our experiments, we depend heavily on graphs that allow us

to quickly see the important results from all the experiments,

not just the averages.

Graphs of the average queue size (number of buffers

86

10

2!0 4!0
1‘!O 4R2. in se.on s

ld.o ‘I :0 l/Or”-

~d.s 1d.o
Time In seconds

ld.5 zd,o

Figure 8: Graph of queue size at bottleneck showing infor-

mation lost due to averaging.

in use) at a bottleneck router is our first example of where

looking just at the averages can be misleading. One of the

important uses of a simulator is to experiment, observing the

effects on the experiment of modifying the parameters. This

type of experimentation helps develop intuition that can be

used to both find problems and solutions. If we are interested

in congestion control mechanisms at the router, it is very

im~portant to have a clear understanding of queue behavior

under different traffic patterns. The top graph in Figure 8

shows the average queue size during a 20 second period of

a simulation, where each point represents the average queue

length over a 100ms interval. Note that under the conditions

of our simulation, there are between three and ten thousand

packets arriving at the bottleneck router every second, so it

is not practical to show the graph of the instantaneous queue

size.

HI - ,. ,!, , L L,. .

2!0 4!0
i‘!O %’Rne In secon s

ld.o ‘1 .0 ld,O l&O k!:O zd,o

Figure 9: Graph of queue size at bottleneck including min-

max bars.

This graph indicates that the queue size doesn’t vary

much, and that it stays under 20 buffers. However, if we look

3!0
lime inzs~conds

Figure 10: Queue behavior during four large TCP transfers.

at the bottom graph, which shows the time interval between

18 to 20 seconds but averages over a 10ms interval (rather

than the 100ms interval), we see that the queue size reaches

all the way to 50 and that it goes over 20 quite often. At this

level of detail, we can see a markedly different behavior of

the queue. Obviously, one should show both the maximum

and minimum queue size (over the average interval) together

with the average. Figure 9 shows the same graphs as Figure 8

but with the added information. Each vertical bar represents

the queue size range over the average interval (100ms for the

top graph, 10ms for the bottom graph). The top graph now

tells us a whole new story-even though the average queue

size is small, it varies dramatically during each interval. The

mechanism of showing the range together with the average

allows us to get a much clearer picture and keeps us from

jumping to the wrong conclusions.

The basic principle is to look at distributions and limits,

not just means, when analyzing results.

4.3 Realistic ‘Ikaffic Sources

Traffic sources are an integral part of most network simula-

tions. The most common ways to simulate this traffic has

been either through Poisson sources, or by having multiple

“bulk transfer” TCP connections.

There are several problems with Poisson sources. First, it

has been shown that Poisson sources fail to accurately model

either LAN traffic [12] or WAN traffic [13]. Moreover, Pois-

son sources are non-reactive—they behave the same way re-

gardless of the network behavior. For example, unlike TCP

sources, which modify their sending rate under the pres-

ence of losses, Poisson sources don’t modify their rate or

any aspect of their behavior for that matter when packets

are dropped due to congestion, Another example of non-
reactive traffic sources are playback sources, which create

traffic based on traces collected from real systems.
There are two problems with these approaches. The first

one, which applies only to Poisson sources and not to play-

87

Time h%econds
3:0

Figure 11: Queue behavior during two large TCP transfers

and tcplib traftic.

back sources, is that the simulated traffic is a poor model

of real traffic. The second problem, which applies to both

Poisson and playback sources, is a result of their non-reactive

behavior: there is no way to measure the effect the new con-

nections have on the background traffic, This is an important

issue, as new protocols should not be adopted before their

effect on current traffic is known.

The other common way of simulating traffic-starting

multiple bulk transfers-does produce reactive traffic, but

the dynamics of this type of traffic are very different from

those of real traffic. For example, Figure 10 shows the queue

size at the router of the network in Figure 6 when nodes 1-

4 are bulk transfer TCP sources. The graph shows a simple

pattern and no information is gained by changing scales in the

bottom graph. Compare this graph to the graph in Figure 11,

in which hosts 1, 3 and 4 are tcplib traffic sources, and hosts

2 and 5 are bulk transfer TCP sources. The behavior at the

router is totally different, and changing scales shows new

detail.
The degree of dissimilarity between the two graphs

should serve as a warning against using bulk transfers as

a. traffic source when simulating wide-area networks. More-

cwer, studies of congestion control mechanisms should in-
clude traftic sources that are more realistic than either Poisson

or bulk transfers.

A final issue regarding realistic traffic sources is the

need for traffic reproducibility. This means that a traffic

source should always produce the same traftic pattern when

given the same set of initial parameters, regardless of the

underlying protocols, the number of nodes, or the type of

network. By traffic pattern we do not mean that a packet

containing z bytes is transmitted at time i!. Instead, we refer

to the structural characteristics of the traffic. For example,

when dealing with tcplib based traffic, a traffic pattern would
be specified by the time a conversation starts, the type of

the conversation (FTP, TELNET, SMTP and NNTP), and the

parameters for that type of conversation. Traffic sources that

meet this definition of reproducibility allow us to compare

things such as the effect on the traflic’s throughput or losses

when it is running on top of two different protocols.

The basic principles behind these discussions are to al-

ways use realistic traffic sources and justify any distributions

used in the experiments.

4.4 Insider Knowledge

When doing experiments involvingTCP transfers, it has been

a common practice to set TCP’S send buffer size based on the

bandwidth delay product of the connection. After all, why

use more buffering than is really needed? The size of the

send buffer limits the maximal throughput a connection can

achieve for a given RTI’. The result of having this upper

limit below the available bandwidth is obvious: the achieved

throughput is not necessarily a reflection of the protocol or

the network, but is an artificially imposed limit.

Buffer size

Limiting throughput Increasing Ioeeee
4 * e *
I 1

4%

3%

2%

1‘Y.

Send Buffer Size (KB)

Figure 12: Throughput vs. Send Buffer Size.

As the send buffer size increases, there is a corresponding

increase in the throughput achieved by the TCP transfer.

This relationship continues until a little after the size of the

send buffer equals the average available bandwidth-delay

product—using a few buffers at the bottleneck router allows

the connection to take advantage of transient increases in the

available bandwidth. What happens after that point depends

on the TCP implementation. In the BSD implementations of

TCP (i.e. TCP Reno), the throughput starts to decrease, and

does so until it reaches a point where additional increases

of the send buffer size have no effect on throughput (see

Figure 12).

The decrease in the throughput as the buffer size in-

creases is the result of the bandwidth probing mechanism in

the BSD-based implementations of TCP. l%ese implemen-

tations increase the window size continuously, by about one

packet per R’IT, until the buffer size limit is reached or pack-

ets are lost. As the window size increases from its optimal

point, which uses only a few buffers at the bottleneck, the
TCP connection uses more and more buffers. The more

buffers the connection uses, the higher the Iikelihoodthat the

router will not be able to absorb a packet burst. Since some of

88

these bursts will be by the connection itself, the larger num-

ber of buffers used by a connection increases the likelihood

that the connection will have losses. When the losses are

detected, the congestion control mechanism in TCP reduces

the window size by half, reducing the throughput.

Figure 12 also shows the average throughput achieved by

TCP Reno as a function of the send buffer size during a series

of transfers over the Internet between two fixed hosts.5 No-

tice how the losses increase as the send buffer size increases.

Thus, using a send buffer size that limits the throughput would

lead to misleading comparisons between protocols, as they

would both perform equally under this condition. Similarly,

using the optimal size would also lead to misleading com-

parisons, unless this fact is pointed out, as real applications

will not be using this optimal send buffer size—it is difficult

to know this size since different connections have different

optimal sizes, and this optimal size changes with time.

This is another example where varying the parameters

of the experiment leads to useful insights and comparisons.

For example, a set of experiments comparing TCP Reno with

TCP Vegas [3] showed that TCP Vegas was not sensitive to

the send buffer size, as long as it is big enough so that it is

not the limiting factor.

The basic principle to remember is that simulation re-

sults are constrained by the values of the input parameters.

Any bias in the choice of these parameters, such as insider

knowledge, will affect the results.

4.5 Byte versus Time lkansfers

Throughput is generally measured by sending a specific

amount of data and recording the time it took to send it. If we

are interested in measuring the difference in throughput be-

tween two protocols, one of which is generally faster than the

other, then there is the possibility of erroneous measurements

in certain cases.

When simulating traffic, there may be a systematic ten-

dency for the level of traffic to either increase or decrease

during the duration of the transfer. If the level increases dur-

ing the transfer, then the slower protocol will end up being

measured as being much slower than it really is because it

had to compete with higher levels of traffic at the end of the

test. Alternatively, if the level of the background traffic tends

to decrease during the duration of the test, then the slower

protocol will be measured as being faster-relative to the

faster protocol—than it really is.

Another way of measuring the throughput is to instead

transfer as much data as possible for a certain amount of time.

This way both protocols will encounter the same background

traffic for the duration of the transfer. As we found early on,

the differences in the measured throughput between the two

5Note that in the casewhere one doesa lot of WAN transfers between the
sametwo hosts, it maybe worthwhile to find a sendbuffer size that results in

near-optimat throughputs. This size should be re-evahsatedevery so otlen,

as it is a function of the traffic.

methods can be considerable, depending on the characteris-

tics of the traffic. For example, in one series of experiments

we measured a 5670 difference in the throughput between

two protocols when sending a full megabyte of data, but only

a 28% difference when sending as much data as we could in

30 seconds. Clearly, the preferred method should be to use

timed transfers rather than length transfers.

In summary, throughput is a function of the number of

bytes sent in a certain period of time. When comparing

the throughput of two different mechanisms, you can either

measure how much time it takes each to send the same amount

of data, or how much data each can send in a certain amount

of time. In most cases, the latter is prefened.

4.6 Uniformity

It is very easy for simulations to loose a lot of the variability

(randomness) that is inherent in the real world. This can be

either a design flaw with the simulator or the result of badly

chosen simulation parameters. An example of uniformity in

a simulation is starting all transfers at the same time. This is

very easy to do in a simulator, but it would generally be an

uncommon occurrence outside of a simulator.

Another example of a lack of variability can occur with

protocols, like the BSD implementation of TCP, where coarse

timers are used to perform special processing. In this imple-

mentation of TCP, two coarse timers are used, one firing

every 200ms and the other every 500ms. Most of the im-

plementations of TCP delay ACKS, which means that when

they receive a packet they do not send an acknowledgment

immediately, but instead wait for more packets to arrive so

they can acknowledge more than one packet at a time. The

BSD implementations of TCP waits for one more packet,

thereby acknowledging two packets at a time. However,

since another packet may not arrive, TCP uses the 200ms

timer to send any acknowledgments that were delayed. The

500ms timer is used to check to see if packets need to be

retransmitted.c

If one is not careful in the implementation, it is easy to

have these timers fire at the same time on all hosts in the

simulated network. This results in periodic bursts of data as

all hosts send the delayed acknowledgments or start retrans-

mitting lost packets at the same time. Since the retransmis-

sion occurring as a result of the 500ms timers involve the

slow-start mechanism, which is a restart of the connection
involving exponential growth of the sending rate, the effect

is equivalent to starting multiple transfers at the same time.

A similar burstiness can occur even when the timers for

each node do not all fire at the same time. The problem

happens when using realistic traffic sources involving multi-

ple TCP connections, but having only a few traffic sources,

each of which is responsible for a large percent of the traf-

fic. Then, when one of the timers fires at one of the sources,

6 me exact ~echanism for deciding when to retransmit is outside the

scope of this papeq [14] gives an excellent description.

89

a large number of connections may send delayed ACKS or

restart their transmissions.

One Traffic Source
60-1 I

8.-
07

40

: 30

~ 20

10

0

Figure 13: Graph showing artificial periodic effects.

A tool that is very useful at finding unwanted uniform

behavior is Fourier analysis. This type of analysis uncovers

periodic behavior that may point to possible problems and to

the cause of these problems. Figure 13 shows the queue size

at the router in Figure 6 when the only source of tcplib traffic

is node 4. It is clear from the graph that periodic behavior

occurs five times per second (every 200ms). The fact that

the spikes occur every 200ms points to the fast timer in TCP

as the cause of these spikes. Note that this behavior is not

evident if we only look at the average queue size rather than

the maximum queue size.

One way to eliminate these bursts is to have more traffic

sources, so the bursts will be distributed more evenly. This

assumes, of course, the traffic sources do not fire their timers

at the same time.

The basic principle is to put a distribution on everything

that needs it. The problem is that when dealing with complex

simulators, it is not always clear what things need to have

distributions in them.

5 Conclusions and Future Work

We have described x-Sire, a network simulator whose goal

is to accurately model the different elements present in real

computer networks. It is our experience that the ability of the

simulator to execute real protocol code will be of assistance

in testing and debugging new network components.

We have also presented a set of concrete guidelines one

should consider when doing network simulations, together

with examples illustrating the effects of ignoring these guide-
lines. These examples serve to quantify the cost of certain

simplifications, such as simpler traffic sources.

We are currently working on improvements to the sim-

ulator to handle multicasting. This goal will be achieved

by applying the MBONE modifications to the simulator’s 1P

protocol. We are also working on the addition of full ATM

support into the simulator. Finally, we are planning to add

the necessary infrastructure to the simulator to support di-

rect execution of BSD protocol code, in addition to z-kernel

protocols.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

J.-S. Ahn, P. B. Danzig, Z. Liu, and L. Yan. Experience with

TCP Vegas: Emulation and Experiment. In Proceedings of

the SIGCOMM ’95 Symposium, Aug. 1995. In press.

L. S. Brakmo and L. L. Peterson. Performance Problems

in BSD4.4 TCP. ACM Computer Communication Review,

25(5):69-86, Oct. 1995.

L. S. Brakmo and L. L. Peterson. TCP Vegas: End to End

Congestion Avoidance on a Global Intemet. IEEE Journal

on Selected Areas in Communications, 13(8): 1465-1480, Oct.

1995,

P. Danzig and S, Jamin. tcplib: A Library of TCP Intemet-

work Traffic Characteristics. Technical Report CS-SYS-91 -

495, Computer Science Department, USC, 1991.

A. Heybey. The network simulator. Technical report, MIT,

Sept. 1990.

N. C. Hutchinson and L. L. Peterson. The x-kernel: An archi-

tecture for implementing network protocols. IEEE Transac-

tions on Sojiware Engineering, 17(1):64-76, Jan. 1991,

V. Jacobson. Congestion Avoidance and Control. In Proceed-

ings of the SIGCOMM ’88 Symposium, pages 314-32, Aug.

1988.

V. Jacobson, R. Braden, and D, Borrnan. TCP Extensions for

High Performance. Request for Comments 1323, May 1992.

R. Jain. The Art of Computer Systems PerjormanceAnalysis:

Techniques for ExperimentalDesign, Measurement, Simukz-

tion and Modeling. John Wiley and Sons, Inc., New York,

1991.

S. Keshav. REAL: A Network Simulator. Technical Report

88/472, Department of Computer Science, UC Berkeley, 1988.

A. M. Law and W. D. Kelton. Simulation Modelling and

Analysis. McGraw-Hill, New York, 1990.

W. Leland, M. Taqqu, W. Wlllinger, and D. Wilson. On the

Self-Similar Nature of Ethernet Traffic, In Proceedings of the

SIGCOMM ’93 Conference, pages 183-193, Oct. 1993,

V. Paxson and S. Floyd. Wide-Area Traffic: The Failure

of Poisson Modeling. In Proceedings of the SIGCOMM ’94

Conference, pages 257-268, Aug. 1994.

W. R. Stevens. TCP/IP Illustrated, Volume 1: The Protocols.

Addison-Wesley Publishing Co., New York, 1994.

USC. Transmission control protocol. Request for Comments

793, USC Information Sciences Institute, Marina del Ray,

Calif., Sept. 1981.

90

