
0018-9162/01/$10.00 © 2001 IEEE28 Computer

Itsy: Stretching the Bounds
of Mobile Computing

T
he advent of fast, power-thrifty micro-
processors has made possible pocket-size
computers with performance approach-
ing that of desktop PCs. This new class
of mobile computers enables applica-

tions and user-interface modalities not feasible with
traditional personal digital assistants and cell phones,
while placing new demands on batteries and power
management. We built Compaq’s Itsy pocket com-
puter research prototype to explore the possibilities,
demands, and limitations of mobile computing.

Our primary hardware goals were to attain high per-
formance with minimal power consumption, size, and
weight. At the same time, we needed a rich feature set
to support user-interface and applications research and
the flexibility to easily add new capabilities. To meet
these goals, we used daughtercards to provide Itsy with
comprehensive expansion capability. Fine-grain hard-
ware control supports flexible power management and
monitoring. Developers can use the Linux operating
system with extensions for a flash file system, resource
sharing, and power management to rapidly prototype
operating system extensions and new applications. Itsy
has sufficient processing power and memory capacity
to run cycle-hungry applications such as continuous
speech recognition, a full-fledged Java virtual machine,
and real-time MPEG-1 movie decoding.

HARDWARE
We began our hardware effort by constructing 75

systems that we used to start software development.1

The experience we gained in building and using these
systems influenced our subsequent design, Itsy v2.

Figure 1 shows this design’s general architecture, and
Table 1 lists its primary specifications.

Our design focused on two goals: packing maxi-
mum performance into a unit that people can com-
fortably carry all day in a pocket or purse and en-
abling easy customization and extension of the sys-
tem hardware and software. Itsy is only slightly larger
than a credit card, but it incorporates these other
desirable features. Criteria such as cost or suitability
for volume manufacturing, which are critical for com-
mercial products, played no significant role.

A small system’s battery and display are generally its
largest and heaviest components, so they establish a lower
bound on the system’s size and weight. For Itsy, we
selected a lithium-ion cell just large enough to provide a
full day of intermittent use, and the smallest available LCD
with sufficient resolution for a rich graphical interface.

We ruthlessly excluded any features or components
that would bloat the system. For example, version 1
users wanted a thumbwheel encoder, a cursor button,
a good speaker, and a stylus slot, but because all four
of these features would not fit within our space bud-
get, we excluded the stylus slot. Similar considerations
led us to omit a bulky stereo headphone jack and codec
in favor of a smaller monaural headset jack and a
monaural codec that includes a touch-screen con-
troller. Finally, a radio transceiver was clearly desir-
able, but we found no obvious best choice to include
in the base system. Therefore, we relegated experi-
mental radios to the daughtercard or serial interfaces.
As a result of these choices, the complete Itsy is only
70 percent larger in volume than it would be if it con-
tained only the battery and display.

William R.
Hamburgen
Deborah A.
Wallach
Marc A.
Viredaz
Lawrence S.
Brakmo
Carl A.
Waldspurger
Joel F.
Bartlett
Timothy
Mann
Keith I.
Farkas
Compaq
Computer
Corporation,
Corporate
Research

C O M P U T I N G P R A C T I C E S

A prototype pocket computer that has
enough processing power and memory
capacity to run cycle-hungry applications
such as continuous-speech recognition
and real-time MPEG-1 movie decoding
has proved to be a useful experimental
tool for interesting applications, systems
work, and power studies.

Processor
The StrongARM SA-1100 is a low-power 32-bit

microprocessor that implements the ARM instruction
set.2,3 This processor was a clear choice because its
integer performance approaches that of desktop
processors, but it uses an order of magnitude less
power. It also provides a useful collection of periph-
eral devices, as well as power-saving features that
researchers can exploit. To minimize energy use, the
StrongARM supports software-controllable clock fre-
quency and two low-power modes: idle and sleep. In
idle mode, the clock to the processor core is gated off,
saving power due to the CMOS circuit technology,
while the rest of the chip remains powered and all
peripherals remain enabled. In sleep mode, most of
the processor is unpowered, and only the real-time
clock and the wake-up circuit remain enabled.
Optionally, the system clock can remain enabled for
faster wake-up.

Display
In contrast to the usual power-saving passive-matrix

displays developers commonly choose for small sys-
tems, Itsy’s LCD has some particularly useful charac-
teristics. Its 0.18-mm pixel pitch is 25 to 30 percent
smaller than the typical pitch of small matrix displays,
permitting dense text and crisp graphics. Its multiline
addressing technology provides higher contrast than
is typical of a passive display. Finally, the LCD’s built-
in 1-bit-per-pixel memory and a programmable-logic-
device (PLD) auxiliary controller make it possible to
display a static monochrome image while the proces-
sor is in sleep mode.

Memory
The most frequent complaint from Itsy v1 proto-

type users was the limitation of having only 4 Mbytes
of flash memory, so we started the v2 motherboard
design with the memory system. As Figure 2 shows,
we chose a micro-ball-grid array package for the flash
instead of a peripheral lead package. Although the
micro-BGA calls for a more complicated assembly
process, it offers three times the mounting density. We
chose the motherboard width to allow dense tiling of
the flash across the board’s full width. We arranged
the DRAMs on the opposite side to match the flash
tiling. Itsy v2 has twice as much DRAM and eight
times as much flash as Itsy v1, with only a 3 percent
increase in board area.

April 2001 29

LED

Speaker Available
daughtercard
functionality

Touch
screen

Codec,
analog

interface

StrongARM
SA-1100

processor

LCD,
backlight

DRAMFlash
memory

Auxiliary
LCD

controller

Microphone

Encoder

Buttons

Two-axis
accelerometer

IrDA

USB

RS-232

Power
(charger,
supply,

monitor)

Docking
connector

USB

RS-232

Power
(3.5 V-13 V)

Li-ion
battery

+

Software
modem
A/D input

Memory bus
(static memory,
DRAM,
two PCMCIA
sockets)

GPIOs
SSP
SDLC
2 UARTs

Codec Coder/decoder
GPIO General-purpose I/O pin
IrDA Infrared Data Association standard port
LCD Liquid crystal display
LED Light-emitting diode
Li-ion Lithium-ion

PCMCIA Personal Computer Memory Card Int’l Assoc.
RS-232 Serial interface
SDLC Synchronous data link controller
SSP Synchronous serial port
UART Universal asynchronous receiver-transmitter
USB Universal serial bus

Table 1. Itsy v2 specifications (without daughtercard).

Component or characteristic Specification

Processor StrongARM SA-1100 (59 MHz–191 MHz)*
Dynamic RAM (DRAM) 32 Mbytes (50 ns, extended data out)
Flash memory 32 Mbytes (90 ns)
Processor-core voltage 1.5 V or 1.23 V (selectable)
Main voltage 3.05 V
LCD 320 × 200 pixels, 15 gray levels
Battery Rechargeable Li-ion (2.2 W × h)
Size 118 mm × 65 mm × 16 mm
Weight 130 gm

*The processor’s manual guarantees operation up to a 191-MHz core frequency at
1.5 V, but all Itsy systems built to date function correctly at 206 MHz and even higher.

Figure 1. Itsy v2
architecture. Most of
the hardware is
implemented on the
motherboard
(depicted in blue).
The LCD and the
touch screen attach
to the motherboard
via dedicated
connectors. Other
parts of the hardware
(shown in yellow)
are implemented on
a separate flexible
circuit board.
A daughtercard
connector is avail-
able to interface with
additional hardware.
Daughtercards can
use any of the
features listed in
the red box.

30 Computer

After choosing the number of DRAM chips (4) and
their individual capacity (64 Mbits), we selected the
device width. Our choices were to implement one bank
using four 8-bit parts (32 Mbytes per bank) or two
banks of two 16-bit parts each (16 Mbytes per bank).
Because the StrongARM only supports up to four
banks, the one-bank option offers better expansion
capabilities. However, we chose the two-bank design
for two reasons. First, refreshing the 16-bit parts con-
sumes less power—about 5.2 mW versus 9.5 mW for
32 Mbytes—because 16-bit parts have a different inter-
nal topology. Second, reading data out of the 16-bit
parts consumes less power because only two parts are
active instead of four. For example, copying memory
using eight-word bursts at 206 MHz requires about
490 mW rather than 630 mW.

Power system
Our DRAM selection demonstrates how we used

architectural decisions and component selection to
stretch battery life. However, to make the best use of
limited battery energy, we had to consider both power
supply and consumption.

Because battery voltage varies widely during use,
the design needs voltage regulators to provide the sys-

tem with constant supply voltages. Linear regulators
are small, cheap, and widely used in small devices, but
they have poor efficiency, particularly when the input
voltage is much larger than the output. Therefore, we
used switching regulators for our two main supplies.
However, because clean audio was a key requirement
for speech recognition, we chose a small, low-noise,
linear regulator for the analog circuitry.

Itsy uses logic specified to operate at 3.3 ± 0.3 V,
but the power supply is set to 3.05 V, only slightly
above the minimum. Because power consumption
increases with the square of the voltage, this reduc-
tion from the usual 3.3 V, combined with the use of a
switching regulator, results in an almost 15 percent
power savings. Although a lower system voltage
reduces noise margins, test systems have operated reli-
ably at as low as 2.7 V, indicating that this design point
was a reasonable trade-off.

Power-saving mechanisms
These power strategies were necessary but not suf-

ficient, so we developed additional hardware features
that allow the software to make the best use of avail-
able energy. The hardware does not automatically dis-
able external peripherals when the processor enters

Figure 2. The (a) top and (b) bottom sides of the Itsy v2 motherboard. Using micro-ball-grid array packages for the processor and
flash memory offers a very high mounting density.

(a) (b)

sleep mode. Instead, the software can turn each unit
on and off individually. This strategy lets the operat-
ing system disable any of these units while the proces-
sor is running, or conversely, any of the units can
remain active while the processor is in sleep mode. For
example, the operating system usually puts the DRAM
in self-refresh mode during sleep, but it can also
choose to completely unpower the DRAM. We can
use these mechanisms to implement a wide variety of
sleep modes, ranging from deep sleep, which main-
tains only the real-time clock, to light sleep, which
keeps the LCD enabled, the DRAM contents pre-
served, the clock on, and most interrupts configured
to wake up the processor.

Itsy’s design lets the software choose to power the
processor core at either 1.5 V or 1.23 V. Although
1.23 V is below the manufacturer’s specification, it is
safe at moderate clock rates and yields about a 30 per-
cent power savings for the core, translating to 10 to 20
percent overall.

Itsy can monitor its own power and energy use.
Voltage measurements and precision current-sense
resistors with differential amplifiers allow sampling of
the power on four separate paths: from the USB or
other external source, to and from the battery, into the
processor core supply, and combined into the main and
analog supplies. External laboratory instruments can
monitor four additional current-sense resistors (for the
DRAM and the three supply outputs). A battery mon-
itor circuit integrates power into and out of the bat-
tery to continuously monitor the state of charge.

Accurately measuring the state of charge has proven
challenging because the battery monitor chip has two
limitations: It cannot handle Itsy’s large dynamic-cur-
rent range, and it provides no method of correcting
for current-measurement input offset errors, which
are significant in a system that spends much of its time
in sleep mode.

Daughtercard interface
To facilitate development of high-performance

hardware extensions, the daughtercard interface
exports the full memory bus—all 32 data bits and all
26 address signals—and most other useful signals.
These other signals implement serial ports, 14 gen-
eral-purpose I/O pins (GPIOs), a software modem,
and a single general-purpose analog input. Because
the serial ports and the GPIOs share many processor
pins, these features are not all available simultane-
ously.

SOFTWARE
To exploit Itsy’s flexible hardware, we needed flex-

ible software. We also wanted a comprehensive,
robust environment for large applications. Open-
source software was attractive because it eliminated

barriers to sharing code. To meet these goals,
we selected Linux, initially porting Russell
King’s ARM distribution (version 2.0.30) to an
SA-1100 evaluation system and then to the Itsy
platform. We then made significant additional
changes to better support handheld computing,
including improvements for power manage-
ment and memory-based file systems. In addi-
tion, we designed and implemented sessions, a
new device-sharing model that lets Itsy run dif-
ferent application environments concurrently.

File systems
Itsy uses the Linux Ramdisk driver to provide

dynamic memory partitioning between process
address spaces and memory-resident file systems. This
implementation is ideal for a handheld device because
it does not waste space on redundant copies of data in
the buffer cache and virtual memory system.

For additional savings, we modified the Ramdisk
driver to discard blocks containing only zeros. This
simple but surprisingly effective form of compression
allowed us to create a large file system that does not
consume physical memory until it stores actual data.

Changes to a Ramdisk are lost when power fails,
so Itsy also has a flash-based file system for stable,
writeable storage. This consists of an ordinary Linux
ext2 file system that expects to run on top of a disk,
plus a block device driver that emulates a disk in a
portion of the flash. Because flash has very different
properties from a disk, this emulation is not trivial:
The system must erase flash before writing it, the min-
imum erase unit is large—128 or 256 Kbytes on Itsy—
and erasing is slow—typically 700 ms per erase unit.

We used the industry-standard flash translation
layer (FTL) data structure for disk emulation. We
based our driver on code from the Linux PCMCIA
subsystem, modified to work with Itsy’s onboard flash.
An FTL driver keeps a map from virtual disk block
addresses to physical flash addresses. It handles reads
simply by looking in the map to find the correct data.
Writes are more complicated.

When the driver must write to a virtual block,
it finds a free—previously erased—physical block,
writes the data into it, and updates the map. The phys-
ical block previously mapped to this virtual address,
if any, is now unused, but the driver cannot erase it if
other blocks in the same erase unit are still in use.
When no free blocks remain, the driver reclaims space
by choosing an erase unit that contains some unused
blocks, moving any in-use blocks still in the unit to a
spare unit, and erasing the old unit, which becomes
the new spare.

We observed a serious performance problem in this
scheme. When the FTL driver reclaims space, it can
free up only blocks that it knows are unused. FTL is

April 2001 31

Sessions, a new
device-sharing

model, lets Itsy run
different application

environments
concurrently.

32 Computer

a disk emulator, not a file system, so it receives only
virtual block read and write requests. Therefore, it
does not find out that the driver has freed a physical
block until the file system overwrites the correspond-
ing virtual block with new data. In the worst case,
when the FTL driver must write to a virtual block, it
knows about only one unused physical block—the one
containing the virtual block’s old value. So it must
erase and recopy a whole erase unit for every write,
slowing FTL performance to a crawl. The Linux FTL
driver avoids the worst case by defining the flash’s vir-
tual size as only 95 percent of its physical size, so that
5 percent of the physical blocks are always known to
be unused. As a result, a single erase can sometimes
reclaim more than one block. However, FTL still per-
forms as poorly as if the flash were 95 percent full, no
matter how empty it really is.

To correct this problem, we made a small modifica-
tion to the Linux ext2 file system. The file system now
informs the block driver when it frees a virtual block,
enabling the driver to reclaim the corresponding phys-
ical block ahead of time. This change greatly reduces
the number of erases per write when the flash is not full.

Power management
To let Itsy operate at reduced power, we modified

Linux to take advantage of the StrongARM proces-
sor’s low-powered operating modes—idle and sleep—
and variable clock speeds.

Exploiting idle mode is straightforward. The
processor can enter and exit the mode in just a few
clock cycles, so we modified the kernel idle loop to

enter idle mode. When an interrupt occurs, the proces-
sor exits idle mode and returns to normal operation.
The user cannot detect idle mode.

Sleep mode saves more power than idle mode. At
the same time, it makes a bigger impact on the system,
both in terms of software and user detectability,
because sleep mode unpowers most of the processor.
In particular, the on-chip peripheral controllers,
including the LCD controller and the UARTs, don’t
work. Sleep mode can be initiated by user request
(such as a button press), by the kernel, or by a system
power fault. Entering sleep mode takes about 150
µs; exiting takes about 10 µs if the clock was left
enabled, 157 µs if it was disabled.

We developed a power management module that
coordinates the suspension and resumption of devices
when sleep mode starts and ends. Each device registers
callbacks that the power manager executes to deter-
mine whether or when the devices are ready to suspend.
Another callback demands that the devices save their
state immediately, pending suspension. When the
processor exits sleep mode, the operating system
reestablishes its previous state (stack and registers), and
the power manager calls the devices for reinitialization.

The power manager module also suspends and
resumes devices when changing the processor clock
speed. Suspending and resuming devices, except the
LCD, is necessary only to prevent temporary glitches,
and it adds about 400 µs to the base clock switching
time of 125 µs. Resetting the LCD takes much longer,
but the processor can perform useful computation
during this time.

MPEG player

Background
session

X windows

Foreground
session

QPE

Background
session

Display
driver

Audio
driver

Buttons
driver

X Windows

Qt Palmtop

Figure 3. An example
of sessions. The
session labeled
X Windows is in the
foreground, and the
others are in the
background. The
audio driver mixes its
inputs, attenuating
the inputs from the
background sessions.
The display driver
shows one of the
foreground session’s
frame buffers. When
the user presses a
button, only the
foreground session
is notified.

Virtualizing Itsy devices
Unlike a unified windowing system that demands

compliance from all applications, the sessions device-
sharing model supports the peaceful coexistence of
distinct yet concurrently executing “worlds,” each of
which sees its own virtual Itsy. Thus, Itsy can concur-
rently run systems as disparate as X Windows, Java,
and Squeak, as well as full-screen stand-alone appli-
cations and virtual consoles.

A session consists of one or more processes. At any
given time, one session is distinguished as the fore-
ground session; the others are background sessions.
As Figure 3 shows, foreground-session processes
receive physical input events, such as button presses or
touch-screen samples. They also have exclusive—or
preferred—access to physical output devices. For
example, a session’s active frame buffer, if any, is vis-
ibly mapped onto the LCD. Processes in background
sessions, on the other hand, do not receive physical
input events, and their output is typically hidden.

When a process opens a physical device, it accesses
only a session-filtered instance of that device. The
input that each physical device generates is replicated
to all instances in the foreground session. Output is
merged from all instances in the foreground session.
A device can drop, attenuate (for example, for audio),
store, or specially handle background-session output.
A user-level process serves as a session manager to
determine which virtual Itsy instance is currently
mapped to the physical hardware. Figure 4 shows a
session manager running on Itsy.

Each physical device also exports a raw interface
that applications requiring continuous access can use.
For example, a speech recognition application running
in the background can use the raw interface to snoop
on all audio input, translate it, and offer the transcribed
text to any application in the foreground session.

EXPERIENCES WITH USER INTERFACES
Itsy’s system software makes porting existing desk-

top applications easy, but unfortunately, some
assumptions of the desktop interaction style are inap-
propriate for small portable devices. Our initial
attempts at using Squeak’s graphical user interface on
Itsy demonstrated the difficulty of mapping a device
with a large display and three-button mouse to a
device with a small display and a stylus. We developed
conventions that made the Squeak GUI usable, but it
was by no means easy to use.

Users cannot move a stylus on a handheld device as
easily and accurately as they move a mouse on a desk-
top. As a result, mastering handheld interfaces that
require precision pointing and tapping is difficult.
Additionally, a desktop GUI has the user’s full attention
for extended periods, but the only portable application
domain that can demand such attention is gaming.

Clearly, as the Palm operating system demonstrates,
GUIs must be specially designed for small systems.

As portable devices shrink further, stylus-based
input becomes even more difficult. This problem led
us to experiment with two nontraditional user inter-
faces: speech-based input and output and gesture-
based input.

Speech
One promising interface for a tiny device is speech.

For output, Itsy uses DECtalk, a commercial text-to-
speech engine. For speech input, a more challenging
problem, we had two speech recognition systems
ported to Itsy. The first, TalkSoft, provides speaker-
independent, small-vocabulary, command-and-con-
trol speech recognition in a small memory footprint.
We have successfully used DECtalk and TalkSoft to
build a speech-based multimedia e-mail program.
Although not a complete implementation, this pro-
gram has successfully demonstrated the feasibility of
speech-based interaction in realistic environments,
even using Itsy’s built-in microphone in a crowded
room.

Dragon Systems ported its speech recognition
system to Itsy. This system includes both a speaker-
independent, grammar-based, continuous-speech,
command-and-control engine and Dragon’s Naturally-
Speaking, a speaker-dependent, continuous-speech
dictation engine with a 30,000-word vocabulary.
Together, the two engines offer the potential for a rich
speech-only user environment.

The promise of speech recognition has been par-
tially realized in the sense that adequate performance
is no longer an obstacle to using speech as an inter-
face for pocket-sized devices. However, we must still
meet the challenge of building effective speech-
centered or multimodal user interfaces.

Gesture
Most desktop-computer input methods rely on

physical manipulation of an object such as a keyboard
or mouse. As systems shrink, we can use the motion
of the system itself for user input. Tilting a handheld

April 2001 33

Figure 4. A session
manager running on
Itsy v2. Several
applications are
simultaneously
running in the back-
ground, including
an MPEG player, a
battery monitor, and
a voice organizer.

34 Computer

computer to navigate through a document has long
been anticipated, but sensors have only recently
become small enough and cheap enough for develop-
ers to embed them in handheld devices that implement
the tilt-to-scroll method.

We extended the tilt-to-scroll method to include the
use of gestures to issue commands. Our user interface,
which we call Rock ’n’ Scroll, lets users gesture to
scroll, make selections, and issue commands, without
resorting to any other input method.4

A photo album application demonstrates this inter-
face. The user tilts the album on either axis to scroll
through miniature photographs until finding a picture
of interest. When the user makes a gentle fanning ges-
ture, the album zooms in on that picture. The user can
make additional fanning gestures to step through the
rest of the album, return to the miniatures, or disable
and enable scrolling. Pictures are available in land-
scape and portrait mode; holding the unit in the new
orientation for a few moments reorients the picture.

Early experiments with a handheld mockup demon-
strated that users quickly learn to operate Rock ’n’
Scroll and gave us some insight into user expectations.
These positive results, as well as improvements in sen-
sor technology, encouraged us to incorporate Rock ’n’
Scroll as a standard input method on Itsy. Figure 5
shows an implemention of the photo album applica-
tion on Itsy. A two-axis micromachined accelerome-
ter senses fore and aft and left and right tilting, and
software converts the accelerometer’s outputs to ges-
ture commands. In our user study, we observed that
tilting the mockup to play a simple game fascinated
nearly all participants. This observation was confirmed
by the enthusiastic reception of our port of id
Software’s Doom game in which users tilt the Itsy to
navigate through a three-dimensional environment.

HEAVY LIFTING WITH A TINY BATTERY
To meet project goals, we needed sufficient process-

ing power and memory capacity to run next-genera-
tion applications and user interfaces, as well as sufficient
battery life to run realistic user interface experiments.
We ran performance and energy consumption tests to
assess how well we fulfilled these needs.

Performance
By running the Dhrystone benchmark on Itsy and

interpolating published results from other systems,5

we found that Itsy’s integer performance is similar to
that of a Pentium P5 system running at 110 MHz. On
the larger, more complex SPECint92 benchmarks, Itsy
performs more poorly because it has smaller caches.
For the SPECint92 subset that we compiled and ran,
Itsy’s performance was comparable with a Pentium
running at 90 MHz.6

These results show that Itsy has the performance
capability to run programs normally associated with
desktop systems. On a 206-MHz Itsy, the DECtalk
text-to-speech engine runs at only a 47 percent sys-
tem load, the command-and-control engines process
speech considerably faster than real time, and
Dragon’s NaturallySpeaking dictation engine runs
about 2.4 times slower than real time.

Energy consumption
We used an automated test rig7 to thoroughly eval-

uate Itsy’s energy use. Table 2 shows the results.
Because most of our applications, such as playing an
audio or video stream, have a fixed duration by defi-
nition, we can characterize them by either average
power consumption—the energy per unit of time—
or average energy consumption. Sleep mode and idle
mode also fall into this category. In other cases, such
as our batch-mode voice recognition experiment, the
energy required for a quantum of work is a more
relevant metric than power.

Table 2 shows that in sleep mode Itsy can preserve
the contents of its 32 Mbytes of DRAM for almost 13
days on a single battery charge. If we use a daughter-
card to add an additional 32 Mbytes of memory, Itsy
still retains data for almost nine days. When Itsy is on
but not doing any work (idle mode), it can stay alive
for 22 to 32 hours. We also can put Itsy into sleep
mode while keeping the LCD and interrupts on, thus
faking an idle system. In that case, a battery charge
lasts more than three days.

However, a handheld computer’s main purpose is
to perform useful work. Itsy can play an audio file for
6.9 to 7.7 hours and generate speech from a text file
for 5.3 hours. It can perform continuous speech recog-
nition for 2.7 hours. The recognizer runs about 2.4
times slower than real time, so this corresponds to
slightly more than one hour of speech dictation.

Figure 5. A photo
album application
on Itsy. When a user
makes a gentle
fanning gesture with
the Itsy, a two-axis
micromachined
accelerometer senses
the fore and aft and
left and right tilting,
and the photo album
application displays
the next picture.

Finally, Itsy can decode and play an MPEG-1 video
file for 2.4 hours.

Users typically need bursts of computation, inter-
spersed with periods of sleep or idle mode, so a real-
istic power use scenario is a mixture of the numbers
shown in Table 2. This data indicates that most users
are unlikely to run out of power if they recharge the
battery every night.

Table 2 also shows that the relationship between
processor clock frequency and overall power is not
intuitive. In a system with many components, the
clock frequency directly affects some components but
affects others only indirectly or not at all. For exam-
ple, in idle mode, decreasing the frequency from 206
MHz to 59 MHz can save about 30 percent of the
power. When Itsy plays an audio file, however, the
power savings drops to 10 percent because the power
the speaker dissipates is independent of the clock fre-
quency. Finally, the power the system requires to gen-
erate speech varies little with frequency.

Our studies also show that changing the clock fre-
quency alone produces limited savings at best.
Instead, the voltage should change at the same time
as the frequency. Although many next-generation
processors will provide this functionality, the current
StrongARM does not. However, we implemented a

similar mechanism by allowing the core voltage to
take two possible values. The last two lines of Table
2 show that this scheme saves an additional 20 per-
cent of the power in idle mode and 11 percent in
speech generation.

The Itsy pocket computer has been a useful tool
for exploring the bounds of mobile comput-
ing. It has proved powerful and flexible

enough for interesting applications, systems work,
and power studies. Designers both inside and outside
our organization have built numerous daughtercards,
including several CMOS cameras,8 a PCMCIA
adapter with a large battery, a low-powered radio,
and many memory expansion cards. The Linux oper-
ating system, once thought too unwieldy for hand-
helds, worked well for Itsy. Linux is now being tried
on other small devices, such as the commercially
available Compaq iPAQ H3600 series of handhelds,
and IBM Research is even using Linux on a wrist-
watch prototype.9 Although we demonstrated the
possibilities of industrial-strength voice recognition,
the Rock ’n’ Scroll gesture-based interface generated
the most interest, and we expect small accelerome-
ters to be widely used in future systems.

April 2001 35

Table 2. Itsy v2’s power consumption, battery lifetime, and effective battery capacity.

Clock System Battery Battery
speed Processor power lifetime capacity

Experiment (MHz) idle (%) (mW) (h) (W × h)

Deep sleep mode 4.58 500.0 2.29
Sleep mode 7.40 308.5 2.28
Sleep mode, mem. 10.6 215.0 2.27
dc*
Sleep mode, static 26.2 87.0 2.27
LCD image
System idle, idle 59 95 69.5 32.3 2.25
mode
System idle, idle 206 95 101 22.0 2.23
mode
Playing audio file 59 83 278 7.75 2.16
(WAV)
Playing audio file 206 93 310 6.88 2.13
(WAV)
Text to speech** 74 <1 397 5.35 2.12
Text to speech** 206 53 401 5.29 2.12
Dictation, *** 206 <1 757 2.67 2.02
mem. dc*
Playing MPEG-1 video 206 16 821 2.42 1.99
file with audio
System idle, idle 59 95 55.4 40.6 2.25
mode, low core voltage
Text to speech, ** 74 <1 352 6.11 2.15
low core voltage

*Memory daughtercard (32-Mbyte DRAM), **DECtalk, ***Dragon’s NaturallySpeaking

36 Computer

Our measurements suggest that to manage power
effectively, a handheld system must have a way to
assess its own power consumption. Systems that accu-
rately measure their own power consumption, as Itsy
does, can more easily exploit processors that support
frequency and voltage scaling. Relying on predefined
policies without such feedback is unlikely to be as suc-
cessful. All these lessons will be important in the design
of future systems, as users’ needs drive the incorpora-
tion of more capabilities into smaller packages. ✸

References
1. M.A. Viredaz, The Itsy Pocket Computer Version 1.5:

User’s Manual, tech. note TN-54, Western Research Lab-
oratory, Compaq Computer Corp., Palo Alto, Calif.,
1998.

2. Intel StrongARM SA-1100 Microprocessor: Developer’s
Manual, Intel Corp., Santa Clara, Calif., 1999.

3. R. Stephany et al., “A 200-MHz 32b 0.5W CMOS RISC
Microprocessor,” Proc. IEEE Int’l Solid-State Circuits
Conf., IEEE Press, Piscataway, N.J., 1998, pp. 238-239,
443.

4. J.F. Bartlett, “Rock ’n’ Scroll Is Here to Stay,” IEEE
Computer Graphics and Applications, May/June 2000,
pp. 40-45.

5. “Performance Database at the Netlib Depository,”
http://www.netlib.org/performance.

6. J.F. Bartlett et al., The Itsy Pocket Computer, research
report 2000/6, Western Research Laboratory, Compaq
Computer Corp., Palo Alto, Calif., 2000.

7. M.A. Viredaz and D.A. Wallach, Power Evaluation of
Itsy Version 2.4, tech. note TN-59, WRL, Compaq Com-
puter Corp., Palo Alto, Calif., 2001.

8. J.F. Bartlett, A Simple CMOS Camera for Itsy, tech. note
TN-58, WRL, Compaq Computer Corp., Palo Alto,
Calif, 2001.

9. C. Narayanaswami and M.T. Raghunath, “Application
Design for a Smart Watch with a High-Resolution Dis-
play,” Proc. 4th Int’l Symp. Wearable Computers, IEEE
CS Press, Los Alamitos, Calif., 2000, pp. 7-14.

William R. Hamburgen is a member of the research
staff at Compaq Computer Corp.’s Western Research
Laboratory. His research interests include packaging
and power systems for the smallest mobile comput-
ers. He received an MS in mechanical engineering
from Stanford University. He is a member of the IEEE
and the ASME. Contact him at bill.hamburgen@
alum.mit.edu.

Deborah A. Wallach is a member of the research staff
at Compaq Computer Corp.’s Western Research Lab-
oratory. Her research interests include mobile com-

puting, operating systems, and power management.
She received a PhD in computer science from the
Massachusetts Institute of Technology. Contact her at
deborah.wallach@compaq.com.

Marc A. Viredaz is a member of the research staff at
Compaq Computer Corp.’s Western Research Labo-
ratory. His research interests are computer architec-
ture, parallel systems, and low-power computing. He
received a PhD in computer engineering from the
Swiss Federal Institute of Technology at Lausanne.
He is a member of the IEEE and the IEEE Computer
Society. Contact him at viredaz@computer.org.

Lawrence S. Brakmo is a member of the research staff
at Compaq Computer Corp.’s Western Research Lab-
oratory. His research interests include operating sys-
tems, power management, and mobile computing. He
received a PhD in computer science from the Univer-
sity of Arizona. Contact him at lawrence.brakmo@
compaq.com.

Carl A. Waldspurger is a senior member of the tech-
nical staff at VMware Inc. His research interests
include operating systems, virtual machines, resource
management, and mobile computing. He received a
PhD in computer science from the Massachusetts
Institute of Technology. He is a member of the IEEE
and the ACM. Contact him at carl@waldspurger.org.

Joel F. Bartlett is a member of the research staff at
Compaq Computer Corp.’s Western Research Labo-
ratory. His primary research interest is “off-the-desk-
top computing.” He received an MS in computer
science and engineering from Stanford University. He
is a member of the ACM. Contact him at joel.
bartlett@compaq.com.

Timothy Mann is a member of the research staff at
Compaq Computer Corp.’s Systems Research Center.
His research interests include operating systems, file
systems, distributed computing, and software config-
uration management. He received a PhD in computer
science from Stanford University. He is a member of
the IEEE and the ACM. Contact him at tim.mann@
compaq.com.

Keith I. Farkas is a member of the research staff at
Compaq Computer Corp.’s Western Research Labo-
ratory. His research interests include microprocessor
design and software/hardware techniques for extend-
ing the battery lifetime of mobile computers. He
received a PhD in electrical and computer engineer-
ing from the University of Toronto. He is a member of
the IEEE and the ACM. Contact him at keith.farkas@
compaq.com.

